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ABSTRACT
Can online trackers and network adversaries de-anonymize
web browsing data readily available to them? We show—
theoretically, via simulation, and through experiments on
real user data—that de-identified web browsing histories can
be linked to social media profiles using only publicly avail-
able data. Our approach is based on a simple observation:
each person has a distinctive social network, and thus the
set of links appearing in one’s feed is unique. Assuming
users visit links in their feed with higher probability than
a random user, browsing histories contain tell-tale marks of
identity. We formalize this intuition by specifying a model
of web browsing behavior and then deriving the maximum
likelihood estimate of a user’s social profile. We evaluate
this strategy on simulated browsing histories, and show that
given a history with 30 links originating from Twitter, we
can deduce the corresponding Twitter profile more than 50%
of the time. To gauge the real-world e↵ectiveness of this ap-
proach, we recruited nearly 400 people to donate their web
browsing histories, and we were able to correctly identify
more than 70% of them. We further show that several on-
line trackers are embedded on su�ciently many websites to
carry out this attack with high accuracy. Our theoretical
contribution applies to any type of transactional data and
is robust to noisy observations, generalizing a wide range
of previous de-anonymization attacks. Finally, since our at-
tack attempts to find the correct Twitter profile out of over
300 million candidates, it is—to our knowledge—the largest-
scale demonstrated de-anonymization to date.
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1. INTRODUCTION
Online anonymity protects civil liberties. At an abstract

level, it enables intellectual freedom: research shows that
users change their behavior when they know they are be-
ing surveilled online [23], resulting in a chilling e↵ect [32].
Concretely, users who have their anonymity compromised
may su↵er harms ranging from persecution by governments
to targeted frauds that threaten public exposure of online
activities [6].
The online advertising industry builds browsing histories

of individuals via third-party trackers embedded on web
pages. While a small number of companies admit to attach-
ing user identities to these browsing-history datasets, most
companies promise users that the histories are pseudony-
mous and not linked to identity. Privacy advocates have
argued that such data can be de-anonymized, but we lack
conclusive evidence. It has remained unclear what type
of identified auxiliary information could be used in a de-
anonymization attack, whether an attack could work at the
scale of millions of users, and what the success rate of such
an attack would be.
In this paper we show that browsing histories can be linked

to social media profiles such as Twitter, Facebook, or Reddit
accounts. We begin by observing that most users subscribe
to a distinctive set of other users on a service. Since users
are more likely to click on links posted by accounts that
they follow, these distinctive patterns persist in their brows-
ing history. An adversary can thus de-anonymize a given
browsing history by finding the social media profile whose
“feed” shares the history’s idiosyncratic characteristics.1

Such an attack is feasible for any adversary with access
to browsing histories. This includes third-party trackers
and others with access to their data (either via intrusion or
a lawful request). Network adversaries—including govern-
ment surveillance agencies, Internet service providers, and
co↵ee shop eavesdroppers—also see URLs of unencrypted
web tra�c. The adversary may also be a cross-device track-
ing company aiming to link two di↵erent browsing histories
(e.g., histories generated by the same user on di↵erent de-
vices). For such an adversary, linking to social media profiles
is a stepping stone.
We make three key contributions. First, we develop a

general theoretical framework for de-anonymization. We as-
sume there is a background probability of clicking on links,
and that a link appearing in a user’s feed increases its prob-
ability of appearing in their browsing history by a user-

1A user’s feed or timeline contains the aggregated content
posted by all accounts to which the user subscribes.



specific factor. We then derive a maximum likelihood es-
timate, which lets us identify the feed in the system most
likely to have generated the observed history. This general
framing applies to a variety of other de-anonymization at-
tacks (c.f. Section 8).

Our second contribution is implementing and evaluating
this technique. We chose Twitter as the source of aux-
iliary information for several reasons: its real-time API,
which avoids the need for large-scale web-crawling; the fact
that most activity is public; and finally, the fact that links
are wrapped in the t.co shortener, which simplifies details
of our attack. We assume that either due to the referer
header or by exploiting timing information, the adversary
knows which links in the user’s history resulted from clicks
on Twitter. By employing a variety of caching and ap-
proximation techniques, we built a system capable of de-
anonymizing web browsing histories in real-time, typically
in under one minute. To test the performance of this sys-
tem, we picked 60 active Twitter users at random, obtained
their feeds, and simulated browsing histories using a sim-
ple behavioral model. Given a synthetic history containing
30 Twitter links, we identified the correct Twitter profile—
out of over 300 million active Twitter users—over 50% of
the time. We show that our maximum likelihood estimate
achieves better accuracy than intersection size and Jaccard
similarity, two approaches that have been previously studied
in the context of similar de-anonymization tasks [15, 35].

Finally, our third contribution is creating an experiment
to test this attack on real browsing histories.2 We built an
online tool to allow users to donate their browsing history;
upon which we executed our attack and showed the result to
the user so they could confirm or deny. The attack worked
correctly for 72% of the 374 users who completed the experi-
ment. We present these results as a proof of concept, noting
that our sample of users is not representative.

There are many ways in which users may be de-anonymized
when browsing the web (see Section 2). However, our attack
is notable for its generality and for the variety of adver-
saries who may employ it. Any social media site can be
used for such an attack, provided that a list of each user’s
subscriptions can be inferred, the content is public, and the
user visits su�ciently many links from the site. For ex-
ample, on Facebook subscriptions can be inferred based on
“likes,” and on Reddit based on comments, albeit incom-
pletely and with some error. Further, it is inherent in the
web’s design and users’ behavior, and is not due to spe-
cific, fixable vulnerabilities by browsers or websites, unlike
previous de-anonymization attacks. It simultaneously con-
firms the fingerprintability of browsing profiles and the easy
availability of auxiliary information. Application-layer de-
anonymization has long been considered the Achilles’ heel
of Tor and other anonymity systems, and our work provides
another reason why that is the case.

The increasing adoption of HTTPS on the web diminishes
the strength of an attack by network adversaries, but not by
third-party trackers. However, network adversaries still see
the domain of encrypted requests, even if the URL is hidden.
We hypothesize that the attack will still work in this scenario
but will require a greater number of links per user. Users
can mitigate attacks by installing tracker-blocking tools such
as Ghostery, uBlock Origin, or Privacy Badger, as well as

2This experiment was approved by Stanford University’s In-
stitutional Review Board (Protocol No. 34095).

HTTPS everywhere to increase the use of encryption. Of
course, not revealing one’s real-world identity on social me-
dia profiles also makes it harder for the adversary to identify
the user, even if the linking is successful. Nascent projects
such as Contextual Identity containers for Firefox help users
more easily manage their identity online [5]. None of these
solutions is perfect; ultimately, protecting anonymity online
requires vigilance and awareness of potential attacks.

2. RELATED WORK
The de-anonymization literature is vast, but linkage at-

tacks (and demonstrations of uniqueness) based on behavior
are especially relevant to our work. These include transac-
tional records of movie viewing [28], location traces [7, 22],
credit-card metadata [8], and writing style [27]. Attacks on
anonymous communication systems such as long-term in-
tersection attacks and statistical disclosure attacks employ
similar principles [24].
To our knowledge, the only previous work that studies

the uniqueness of browsing history is by Olejnik et al. [31].
Based on a large online experiment, they report that testing
50 links is su�cient to uniquely fingerprint 42% of users in
a sample of about 370,000 users, and that these behavioral
fingerprints are stable over time. Their results are not di-
rectly comparable with ours: the browsing histories in their
experiment were obtained via “history sni�ng” (which uses
a browser bug that has long been fixed). As a result, they
are only able to test for the presence or absence of URLs
from a selected list, rather than analyze the entire brows-
ing history of participating users. Further, the work leaves
open the question of whether these behavioral fingerprints
can actually be linked to auxiliary information.
Wondracek et al. [38] present an online de-anonymization

attack that is conceptually similar to ours, although it again
involves history sni�ng. Further, it relies on additional pri-
vacy vulnerabilities on social media sites: specifically, tak-
ing an action (such as commenting) results in a request to a
URL specific to that comment or other action. From a scien-
tific perspective, the paper shows that group memberships
in social media sites tend to be unique, but does not shed
light on the uniqueness or de-anonymizability of browsing
histories in general (in the absence of the now-fixed privacy
vulnerabilities).
Our work also directly relates to third-party online track-

ing. Such tracking has grown tremendously in prevalence
and complexity over the past two decades [20, 25, 34, 4].
Today Google can track users across nearly 80% of sites
through its various third-party domains [21]. Web tracking
has expanded from simple HTTP cookies to include more
persistent tracking techniques, such as the use of flash cook-
ies to“respawn”or re-instantiate HTTP cookies [36], the use
of cache E-Tags and HTML5 localStorage for the same pur-
pose [3], and“cookie syncing”between di↵erent third parties
[11, 1]. Device fingerprinting attempts to identify users by
a combination of the device’s properties [9, 19]. New finger-
printing techniques are continually discovered [26, 30, 13],
and are subsequently used for tracking [29, 2, 1, 10]. These
techniques allow trackers to more e↵ectively compile unique
browsing histories, but they do not by themselves link his-
tories to identity.
Leaks of PII from first parties to third parties are rampant,

and this is one way in which an identity may be attached to
pseudonymous browsing histories [18, 17]. Further, the NSA



is known to piggyback on advertising cookies for surveil-
lance; Englehardt et al. [11] show that this technique can be
e↵ective and that such a network eavesdropper may also be
able to learn users’ identities due to usernames and other
PII transmitted by websites in the clear. Our work presents
a new way in which eavesdroppers may connect web tra�c
to identities, and it will work even if the PII leaks are fixed.

3. DE-ANONYMIZATION STRATEGY
Our de-anonymization strategy proceeds in three steps.

First, we posit a simple model of web browsing behavior
in which a user’s likelihood of visiting a URL is governed
by the URL’s overall popularity and whether the URL ap-
peared in the user’s Twitter feed. Next, for each user, we
compute their likelihood (under the model) of generating a
given anonymous browsing history. Finally, we identify the
user most likely to have generated that history. A similar
likelihood-based approach was used by Ma et al. [22] to
de-anonymize location traces.

We construct a stylized model of web browsing by first
assuming that a user’s web history is generated by a se-
quence of independent, identically distributed random vari-
ables H1, . . . , Hn, where Ht corresponds to the t-th URL
visited by the user. We further assume that each user i has
a personalized set of recommended links Ri. For example,
on a social media site like Twitter, we can take this recom-
mendation set to be those links that appear in the user’s
feed (i.e., links posted by the user’s friends on the network).
Finally, we assume that a user is more likely to visit a link
if it appears in the user’s recommendation set, where there
is a user-specific multiplicative factor ri that describes each
user’s responsiveness to the recommendation set. A user’s
web browsing behavior is thus controlled by two parameters:
the recommendation set Ri (which is a set of links), and the
recommendation factor ri.

Theorem 1 below formalizes this generative model of web
browsing behavior. Further, given a browsing history and
a set of candidate users with recommendation sets C =
{R1, . . . , Rk}, it derives the maximum likelihood estimates
R̂ and r̂. In particular, R̂ is the recommendation set (and
hence user) most likely associated with a given, de-identified
browsing history.

Theorem 1. Let ⌦ = {!1, . . . ,!N} be a universe of items,
and suppose {pj} gives a probability distribution on ⌦ (i.e.,
pj � 0 and

PN
j=1 pj = 1). Let C = {R1, . . . , Rk} be a collec-

tion of recommendation sets, where Ri ✓ ⌦. For any R 2 C
and r > 0, define a random variable Ht(R, r) taking values
in ⌦ such that

Pr(Ht = !j) =

(
rpj/z if !j 2 R

pj/z if !j 62 R

where z is a normalizing factor: z = r
P

!j2R pj+
P

!j 62R pj .

Then, given i.i.d. draws H1(R, r), . . . , Hn(R, r), the maxi-
mum likelihood estimates (R̂, r̂) of the underlying parameters
are

R̂ = argmax
R2C


qR log

✓
qR
pR

◆
+ (1� qR) log

✓
1� qR
1� pR

◆�
(1)

and

r̂ =

✓
qR̂

1� qR̂

◆,✓
pR̂

1� pR̂

◆
(2)

where qR = |{t | Ht 2 R}|/n and pR =
P

!j2R pj .

In the theorem above, qR is the fraction of links in the
observed browsing history that are in the recommendation
set R (e.g., the fraction of links appearing in the associated
user’s Twitter feed). Similarly, pR is the generalized size of
the recommendation set, where it accounts both for the total
number of items in the set and the popularity of those items.
Intuitively, R̂ is a recommendation set for which qR̂ is large
and pR̂ is small; that is, many of the links in the observed

history appear in R̂ and R̂ is not too big. The theorem allows
for ri < 1, in which case Ri is an “anti-recommendation” set
(e.g., a list of malware links one should not visit). However,
in the cases we consider here, ri > 1.

Proof. Let XR(!) = 1 if ! 2 R, and XR(!) = 0 oth-
erwise. Furthermore, suppose Ht = !at . Then the log-
likelihood L(R, r) of H1, . . . , Hn is

L(R, r) =
nX

t=1

h
XR(!at) log

⇣rpat

z

⌘
+ (1�XR(!at)) log

⇣pat

z

⌘i

=
nX

t=1

[XR(!at) log r + log pat � log z] .

Now, note that

z = r
X

!j2R

pj +
X

!j 62R

pj

= (r � 1)
X

!j2R

pj +
X

!j2⌦

pj

= (r � 1)pR + 1.

Consequently,

L(R, r) =
nX

t=1

[XR(!at) log r + log pat � log((r � 1)pR + 1)]

= nqR log r � n log ((r � 1)pR + 1) +
nX

t=1

log pat .

Di↵erentiating L with respect to r, we have

@

@r
L(R, r) =

nqR
r

� npR
(r � 1)pR + 1

and so @
@rL(R, r) = 0 when

r =
qR
pR

· 1� pR
1� qR

.

At these critical points,

z = (r � 1)pR + 1

=
1� pR
1� qR

.

Substituting these values into the original expression, we
find that the value of R at which L(R, r) attains its maxi-
mum must also maximize the function
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qR log r � log z

= qR log


qR
pR

· 1� pR
1� qR

�
� log


1� pR
1� qR

�

= qR log
qR
pR

� (1� qR) log


1� pR
1� qR

�
.

Therefore, we find that

R̂ = argmax
R2C


qR log

✓
qR
pR

◆
+ (1� qR) log

✓
1� qR
1� pR

◆�

and

r̂ =

✓
qR̂

1� qR̂

◆,✓
pR̂

1� pR̂

◆
.

To help provide intuition about our MLE approach, we
compare it to two natural alternative strategies. In the
first—which we term the intersection size method [33, 38]—
one associates a given history H with the recommendation
set R that contains the most URLs from the history (i.e., R
that maximizes |R \ H|). In contrast to the MLE, such a
strategy does not explicitly adjust for the size of the recom-
mendation set, and one worry is that the intersection size
method is biased toward larger recommendation sets. To
account for the size of a recommendation set, a second al-
ternative is to associate a history with the recommendation
set that has the greatest Jaccard similarity with the history:
|H \R|/|H [R|. In many cases, the recommendation set R
is much larger than the history H (e.g., the number of links
appearing in one’s Twitter feed is often much larger than
the number of links one visits), and so maximizing Jaccard
similarity approximately amounts to finding the candidate
set R that maximizes |H \R|/|R|.

Figure 1 shows that our MLE approach penalizes the size
of a candidate recommendation set more than the intersec-
tion size method and less than Jaccard similarity. For each
of the three de-anonymization methods, the lines in the con-
tour plot indicate level curves, along which candidate rec-
ommendation sets receive equal scores. In computing the
MLE, for simplicity we assume each item in the recommen-
dation set has constant probability pj = 1/106. Because the
intersection size method is independent of the size of the
recommendation set, its level curves are vertical. Jaccard,
in contrast, has linear contours (where we approximate Jac-
card by |H \ R|/|R|, so that we do not need to consider
dependence on history size). Finally, the MLE has contours
that are close to those of intersection size, but not quite
vertical.

4. SYSTEM DESIGN
The MLE estimate described above requires calculating

qR, the number of history links appearing in a candidate’s
recommendation set, and pR, the generalized size of the rec-
ommendation set. Furthermore, it requires maximizing an
expression of these quantities across all users in the network.
For a typical network with hundreds of millions of users, ac-
quiring and calculating these quantities is computationally
challenging. Here, we outline a system that addresses these
hurdles for the Twitter social network and enables real-time
linking of web browsing histories to user profiles.

4.1 Candidate Ranking
We begin by expressing the MLE estimate concretely in

terms of the Twitter network: recommendation sets, Ri, are
the links posted by friends of a particular user i,3 and the
anonymous history H = {H1, . . . , Hn} is a set of links some
user has clicked on from Twitter.4 In this formulation, qRi

is the number of links from H posted by user i’s friends, and
pRi is a measure of the user’s feed size.
An immediate simplification is to reduce our candidate set

C to only feeds that have at least one link from the history,
Ĉ = {Ri | Ri \ H 6= ;}, since the MLE is approximately
zero outside of this set. Because the complete list of posters
for a link is obtainable through a search query, we can find
all recommendation sets in Ĉ. Specifically, we first search
Twitter to determine all the users who posted a link in the
history. Then, for every poster, we add their followers’ feeds
to our reduced set of candidates Ĉ. The search results also
let us calculate qRi scores for every candidate by counting
the number of distinct links in H posted by their friends.
The score pRi is the total background probability of click-

ing on links in Ri. In practice, it is impossible to deter-
mine the exact distribution of these probabilities. We ap-
proximate pRi by assuming that each of user i’s friends
tweets links with a fixed total probability and estimate p̂Ri =
� · (# of friends of user i), where � = e�15. The parame-
ter � was loosely estimated based on the volume of Twitter
links; it was fixed prior to any empirical evaluation.

3Twitter defines the friends of a user as the set of people the
user follows.
4The exact method used to restrict an entire browsing his-
tory to links clicked on from Twitter depends on the mode
of the attack and is described later in more detail.
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4.2 System for Real-Time De-Anonymization
Our strategy to generate candidates queries Twitter data

sources for search results and network information (i.e., fol-
lower lists). There is, however, a limit to how many queries
we can make in real-time. To address this issue, we first ob-
serve that links appearing in a large number of candidate sets
provide little signal, and so one can calculate the MLE on a
reduced history Ĥ ✓ H of informative links whose network
information is obtainable within some set amount of time.
If any part of a link’s network is too expensive to obtain,
we disregard the link entirely. This ensures we calculate qRi

exactly for a given history Ĥ. Our approximation Ĥ can be
thought of as strategically throwing away some signal about
links clicked by the user in order to exactly and tractably
calculate qR.

To e�ciently assemble network information, we use an
eager caching strategy: in the background, we run a service
that listens to the stream of tweets and finds users with
between 10,000 and 100,000 followers; these users are then
added to a cache and crawled by a di↵erent process. Our
de-anonymization strategy thus relies on both pre-fetched
data and information obtained in real-time.

Figure 2 outlines the system architecture used for real-
time de-anonymization. Our de-anonymization service starts
by receiving an anonymous historyH. It then searches Twit-
ter for all tweets containing links found in the history. The
search results are passed on to the crawling system which
attempts to crawl the followers of every poster in the search
results. If a poster is not cached and is too expensive to
crawl in real-time, we omit the links they posted from our
history set to produce Ĥ. At the end of the crawling stage,
we have a list of recommendation sets and qRi scores. The
final step of the de-anonymization calculates an MLE using
Theorem 1 with the approximations Ĉ, Ĥ, and p̂Ri described
in this section.

5. SIMULATIONS

5.1 Constructing synthetic histories
To evaluate our de-anonymization strategy, we start by

examining performance on a set of synthetically generated
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Figure 3: De-anonymization accuracy on synthetic

browsing histories for three candidate ranking meth-

ods: the MLE of Theorem 1, the number of history

links appearing in the candidate’s feed (intersection

size), and Jaccard similarity.

histories. The simulated histories are constructed to follow a
simple behavioral model: a user clicks on links mostly from
their own feed and sometimes clicks on links posted by a
friend of a friend. A user might be encouraged to visit such
friend-of-friend links by Twitter’s algorithmic recommenda-
tion system [37] or simply visit these links due to organic
exploration. In either case, these friend-of-friend URLs test
a de-anonymization model’s resilience to noise.
Based on the behavioral model, we construct these histo-

ries in three steps. First, we monitor the real-time stream
of Twitter activity and randomly select a user who posted
a tweet, with two caveats: we exclude users with fewer than
20 friends or followers and those with more than 300 friends.
The former restriction ensures that our sample includes rea-
sonably active users, and the latter limit is chosen so that
we can e�ciently construct histories within rate limits. We
note that this sample of users is not representative of the
overall population of Twitter users, in part because those
who appear in the real-time stream of tweets tend to be
significantly more active than average.
Next, for each of the selected users, we generate friend

links and friend-of-friend links. Friend links—posted by a
friend of the user and thus appearing in the user’s feed—are
generated by randomly selecting one of the user’s friends and
then randomly selecting a URL posted by that friend in the
last 30 days. We sample links posted by friends-of-friends
by first sampling a friend of the user uniformly at random,
then sampling a friend of that friend at random, and finally
sampling a link posted by that friend-of-friend.
In total we generate 50 friend URLs and 10 friend-of-friend

URLs for 60 users.5 We blend the friend and friend-of-friend
URLs to create a collection of synthetic histories for each
user with various sizes and link compositions.

5We selected 90 users from the stream, but 30 had too little
obtainable feed activity to simulate 50 URLs.
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5.2 Analysis
Figure 3 compares the accuracy of the MLE of Theorem 1

to that of the intersection and Jaccard methods for pure
friend histories. The plot illustrates two points. First, even
with a relatively small history of links, the MLE method suc-
cessfully de-anonymizes a substantial proportion of users.
For example, given 30 URLs, the MLE correctly identi-
fied 52% of users in our sample. Second, at each history
size, the MLE matches or outperforms the other two de-
anonymization methods. In contrast to the MLE’s 52% de-
anonymization rate with 30 URLs, the intersection method
correctly identified 42% of users, and Jaccard identified just
13% of users.

We next examine the robustness of our approach to histo-
ries containing friend-of-friend URLs. Figure 4 shows these
results for blended histories containing 10% and 20% friend-
of-friend links at various history sizes. As expected, histories
with friend-of-friend links are harder to de-anonymize. In
particular, with 30 URLs, 20% of which are friend-of-friend
links, we successfully identify 40% of users in our sample,
compared to 52% for histories of size 30 containing only
friend links. Nevertheless, de-anonymization accuracy is still
relatively high.

6. REAL-WORLD EVALUATION

6.1 Collecting web browsing data
The above results on synthetic browsing histories point to

the potential for our de-anonymization approach. We next
evaluate this method on real, user-contributed web browsing
histories, which we collected via an online experiment.

The experiment was open to users running the Google
Chrome web browser on a desktop computer. As shown in
Figure 5, when users first visited our site, they were pro-
vided with a brief description of the experiment and then
asked to install a Chrome extension to send us their re-
cent web browsing history. The extension extracted up to
100 Twitter links—marked with domain name t.co—visited
within the past 30 days to generate the Twitter history H

for de-anonymization. If fewer than five links were found
in their history, we told users that we would not be able to
de-anonymize them and sent no data to our servers. Users
with at least five t.co links were given an opportunity to
verify their data and confirm that they wanted to share it.
The uploaded history was processed by the real-time de-

anonymization system described in Section 4.2. The system
constructed the reduced history Ĥ of links by defining infor-
mative links as those which were: (1) tweeted or retweeted at
most 100 times; and (2) had only been tweeted or retweeted
by people with at most 100,000 followers. If a user did not
have at least four informative links (i.e., if |Ĥ| < 4), we again
told the user that we did not have enough information to suc-
cessfully run the de-anonymization procedure. Overall, 84%
of users who submitted their browsing history passed this
filter; among those with at least 10 links, 92% passed; and
among those with at least 20 links, 97% passed the filter.
The de-anonymization procedure produced a list of can-

didates ranked by MLE score. Users were shown the top 15
candidates and prompted to inform us which, if any, corre-
sponded to their Twitter profile. After responding to this
question, users were o↵ered an optional opportunity to dis-
close their identity by signing into Twitter, in which case
we would know their identity even if none of our top 15
candidates were correct.
We recruited participants by advertising the experiment

on a variety of websites, including Twitter, Facebook, Quora,
Hacker News, and Freedom to Tinker. In total, 649 people
submitted web browsing histories. In 119 cases (18%), our
application encountered a fatal error (e.g., because the Twit-
ter API was temporarily unavailable), and we were unable to
run the de-anonymization algorithm. Of the 530 remaining
cases, 87 users (16%) had fewer than four informative links,
and so we did not attempt to de-anonymize them; we thus
attempted to de-anonymize 443 users. Of these, 374 users
(84%) confirmed whether or not our de-anonymization at-
tempt was successful. And of these 374 users, 77 (21%)
additionally disclosed their identity by signing into Twitter.
We note that the users who participated in our experiment

are not representative of the Twitter population. In partic-
ular, they are quite active: the users who reported their
identity had a median number of 378 followers and posted a
median number of 2,041 total tweets.

6.2 Analysis
Of the 374 people who confirmed the accuracy of our de-

anonymization attempt, 268 (72%) were the top candidate
generated by the MLE, and 303 participants (81%) were
among the top 15 candidates.6 Consistent with our simu-
lation results, we were able to successfully de-anonymize a
substantial proportion of users who contributed their web
browsing histories.
Figure 6 adds detail to this result, showing accuracy as a

function of the size of a participant’s submitted history. As
expected, performance is strongly related to history size. We
correctly identified 86% of users with 50–75 URLs whereas
our accuracy falls to 71% for participants with 25–50 URLs.
We also compare the performance of our de-anonymization

approach to the intersection method and Jaccard similarity.

6In part we achieve this performance because t.co links are
uniquely generated every time a link is posted to Twitter.
However, even if we consider only the original, unshortened
links, we still achieve 49% de-anonymization accuracy.



Figure 5: Screenshots of the online experiment.
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Figure 6: De-anonymization accuracy for three can-

didate ranking methods on user-contributed web

browsing histories. Accuracy for intersection size

and Jaccard rankings are approximate, as ground-

truth answers are typically only available for users

who were ranked in the top 15 by the MLE.

Unfortunately, because of the experiment’s design, we typi-
cally only know ground truth for the individuals who ranked
in the top 15 by our approach, and it is possible in theory
that the other two methods succeed precisely where the MLE
fails. To assess this possibility, we consider the 11 cases in
which an individual did not appear in our list of top 15 can-
didates but disclosed their identity by signing into Twitter.
In all of these 11 cases, both the intersection method and
Jaccard failed to successfully identify the user. Thus, while
based on a small sample, it seems reasonable to assume that
if a participant is not ranked in the top 15 by the MLE
method, then other de-anonymization methods would also
have failed. Based on this assumption, Figure 6 compares
the performance of all three de-anonymization methods on
the full set of 374 users. As on the simulated data, we find
that our method outperforms Jaccard similarity and inter-
section size, often by a substantial margin.

We can further use the MLE scores to estimate the con-
fidence of our predictions. Given ordered candidate scores
s1 � s2 � · · · � sn for an anonymous browsing history H,
the eccentricity [28] of H is (s1�s2)/std-dev({si}). Figure 7
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Figure 7: De-anonymization accuracy on the top-k
histories ranked by eccentricity and history length.

shows prediction accuracy on the top-k instances ranked by
eccentricity. The right-most point on the plot corresponds
to accuracy on the full set of 374 histories (72%); if we limit
to the 50% of histories with the highest eccentricity, accu-
racy increases to 96%. For comparison, the plot also shows
accuracy as a function of history length, and indicates that
eccentricity is the better predictor of accuracy.

7. THREAT MODELS
Our de-anonymization strategy assumes access to an in-

dividual’s Twitter browsing history. Such data are available
to a variety of organizations with commercial or strategic in-
centives to de-anonymize users. In this section, we describe
two such possible attackers and evaluate the e�cacy of our
approach on data available to them.
Third-party trackers are entities embedded into some web-

sites for the purpose of collecting individual user browsing
habits. Trackers can determine whether a user arrived from
Twitter to a site where they are embedded by examining
the page’s document.referrer property. We estimate the
de-anonymization capabilities of four common third-party
trackers: Google, Facebook, ComScore, and AppNexus. For
each user-contributed history, and for each organization, we
first determine which URLs in the history they are likely
able to track by checking if the organization has a tracker



●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

0%

20%

40%

60%

80%

100%

25 50 75 100
Number of links

Ac
cu

ra
cy

●

●

●

●

Google
Facebook
AppNexus
ComScore

Figure 8: De-anonymization accuracy on the subset

of links visible to various organizations that track

online behavior, based on user-submitted histories.

installed on the top-level domain of the URL [10]. We then
attempt to de-anonymize each history based only on the sub-
set of URLs visible to each tracking organization. Figure 8
shows the results of this analysis and illustrates that all four
organizations are pervasive enough to successfully carry out
de-anonymization using our method.

Finally, we examine the de-anonymization capabilities of a
network eavesdropper. These are attackers capable of sni↵-
ing network tra�c (e.g., state actors with access to back-
bone servers) and monitoring server requests from anony-
mous users. Due to security features of the https protocol,
such attacks can only determine the full URL of requests
made over http. Therefore, to simulate the data available
to them, we run our de-anonymization strategy using only
http links submitted in our real-world experiment. We find
that network attackers can be fairly successful: 31% of par-
ticipants in our experiment were identified using only their
http links.

8. DISCUSSION AND CONCLUSION
We have shown theoretically and empirically that web

browsing histories can be linked to social media profiles us-
ing only public auxiliary information. The form of Theo-
rem 1 applies to any bounded set of items from which an
anonymous actor makes selections influenced by some a�n-
ity mechanism. For example, paper citations are likely se-
lected from a universe of relevant work where authors have
an a�nity for their own work or past citations, as shown
by [14]. With this framing, our MLE may be used to de-
anonymize papers with author names stripped for double-
blind review. Similarly, our model is applicable to the prob-
lem of de-anonymizing a movie rental record based on re-
views posted on the web [28], as well as a long-term inter-
section attack against an anonymity system based on, say,
the timing of a user’s tweets or blog posts [24]. All of these
can be seen as behavioral fingerprints of a user, and our anal-
ysis helps explain why such fingerprints tend to be unique
and linkable. Exploring other problems where our model
applies is one direction for future work.

Our statistical approach yielded a useful algorithm that
we were able to validate in simulations and with real brows-
ing histories. Our quantitative estimates of accuracy might
overestimate the e↵ectiveness of a real-life attack in some
ways but underestimate it in other ways. For example,
a third-party tracker may not always be able to learn if
the current page visit originated from the social media site
in question. On the other hand, the adversary may fruit-
fully make use of other fingerprinting information available
through URLs, such as UTM codes. Thus, the main lesson
of our paper is qualitative: we present multiple lines of evi-
dence that browsing histories may be linked to social media
profiles, even at a scale of hundreds of millions of potential
users. Furthermore, our attack has no universal mitigation
outside of disabling public access to social media sites, an
act that would undermine the value of these sites.
There are many ways in which browsing history may be

de-anonymized online. Most straightforwardly, both Face-
book and Google—exploiting the fact that they are promi-
nent first parties as well as third parties—track users under
their real identities. However, our attack is significant for its
broad applicability. The technique is available to all track-
ers, including those with whom the user has no first-party
relationship. Our findings are relevant in various other set-
tings. One example is the Federal Communications Com-
mission’s recently adopted privacy rule for Internet service
providers: the FCC requires that to store and use customer
information, ISPs ensure that the information is “not rea-
sonably linkable” to individuals. Our results suggest that
pseudonymous browsing histories fail this test, and call for
more research into privacy-preserving data mining of brows-
ing histories [16, 12].
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