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ABSTRACT
The “algorithmic small-world hypothesis” states that not
only are pairs of individuals in a large social network con-
nected by short paths, but that ordinary individuals can
find these paths. Although theoretically plausible, empiri-
cal evidence for the hypothesis is limited, as most chains in
“small-world” experiments fail to complete, thereby biasing
estimates of “true” chain lengths. Using data from two re-
cent small-world experiments, comprising a total of 162,328
message chains, and directed at one of 30 “targets” spread
across 19 countries, we model heterogeneity in chain attri-
tion rates as a function of individual attributes. We then
introduce a rigorous way of estimating true chain lengths
that is provably unbiased, and can account for empirically-
observed variation in attrition rates. Our findings provide
mixed support for the algorithmic hypothesis. On the one
hand, it appears that roughly half of all chains can be com-
pleted in 6-7 steps—thus supporting the “six degrees of sep-
aration” assertion—but on the other hand, estimates of the
mean are much longer, suggesting that for at least some of
the population, the world is not “small” in the algorithmic
sense. We conclude that search distances in social networks
are fundamentally different from topological distances, for
which the mean and median of the shortest path lengths
between nodes tend to be similar.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sci-
ences

General Terms
Experimentation, Human Factors
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1. INTRODUCTION
For forty years, the provocative“small-world”experiments

of Stanley Milgram and colleagues [17, 25, 34] have been
cited as evidence that everyone in the world is connected
to everyone else via “six degrees of separation.” This claim,
however, can be interpreted in two very different ways. The
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first interpretation—which we call the “topological” version
of the hypothesis—holds only that for a randomly chosen
pair of individuals, there exists with high probability a short
chain of intermediaries that connects them, where “short”
is usually interpreted as proportional to the logarithm of
the population size [38]. The second interpretation makes a
much stronger claim—namely that ordinary individuals can
effectively “navigate” these short chains themselves, with ev-
ery individual having only local knowledge of the social net-
work in question [1, 2, 13, 14, 21, 26, 33, 37]. For this reason,
it has been labeled the “algorithmic” small-world problem
[13, 14].

Distinguishing between the topological and algorithmic in-
terpretations of the small-world hypothesis is important be-
cause each is relevant to different social processes [36]. The
spread of a sexually-transmitted disease along networks of
sexual relations, for example, does not require that partic-
ipants have any awareness of the disease, or intention to
spread it; thus for an individual to be at risk of acquiring an
infection, he or she need only be connected in the topologi-
cal sense to existing infectives. On the contrary, individuals
attempting to “network”—in order to locate some resources
like a new job [9] or a service provider [19]—must actively
traverse chains of referrals; thus must be connected in the
algorithmic sense. Depending on the application of interest,
therefore, either the topological or algorithmic distance be-
tween individuals may be more relevant—or possibly both
together.

Given the distinct implications of topological versus al-
gorithm connectivity, it is also important to note that the
two interpretations are supported by very different kinds
of evidence. In recent years, hundreds of empirical studies
of large-scale networks have been conducted across a num-
ber of domains, including not only social networks [8, 18,
20, 27], but also biological [12, 35, 38], technological [31,
38], organizational [16], and virtual networks [4]. Two near-
universal findings of these studies are: (1) that a majority of
individuals in a given population are connected in a single
“giant component”; and (2) that the typical shortest path
length connecting pairs of nodes within the giant compo-
nent is on the order of the logarithm of the system size.
In a recent study of a network of 180M instant messenger
users (where a link is defined as two users nominating each
other as IM “buddies”), for example, Leskovec and Horvitz
[20] found that users were separated by a mean of 6.6 steps
and a median of 7 steps. Taken together, therefore, these
studies provide overwhelming evidence for the topological
interpretation of the small-world hypothesis, confirming it



for networks spanning six orders of magnitude in size (from
hundreds to hundreds of millions), and across many substan-
tive domains.

Empirical evidence in favor of the algorithmic small-world
hypothesis—that individuals can locate these paths—is, how-
ever, much less conclusive [15, 36]. A handful of classic soci-
ological case studies—such as Lee’s “The search for an abor-
tionist” [19] and Granovetter’s “Getting a job” [9]—along
with numerous anecdotal examples from the growing liter-
ature of “networking” books [24, 28, 30]—suggest that in
at least some circumstances individuals can indeed navigate
their social networks to locate useful resources. It is un-
clear, however, whether these examples provide evidence for
a general “searchability” property of social networks that
allows even quite ordinary individuals to perform successful
social searches under routine conditions, or instead represent
a collection of special cases—either because the individuals
in question, or their circumstances, are somehow atypical.

In recent years, a number of mathematical and simula-
tion models [1, 2, 13, 14, 21, 26, 33, 37] have been proposed
with the objective of making a theoretical case in favor of
the generic searchability of social networks. Although sug-
gestive, these results rely on some form of simulation—of
the underlying social network, of the search procedure, or
of both together—and thus they still do not constitute di-
rect empirical evidence for the key claim of the algorithmic
small-world hypothesis, that ordinary individuals in large
social networks can routinely locate short paths. More seri-
ously, perhaps, the models described above all tend to make
certain homogeneity assumptions that treat all individuals
as equivalent; hence, they have little to say about the im-
pact on social search of well-known sources of heterogeneity
and inequality in real social networks [5, 29]. Mathematical
models, computer simulations, and isolated examples aside,
therefore, the primary source of empirical evidence for the
algorithmic small-world hypothesis continues to be that pro-
vided by small-world type experiments of the kind invented
by Milgram.

How persuasive, then, are these findings? As Kleinberg
[13] noted in his initial formulation of the algorithmic small-
world problem, the experiment conducted by Travers and
Milgram [25, 34] clearly demonstrated that at least some
people are able to construct short chains, comprising an av-
erage of approximately five intermediaries, that connect dis-
tant senders from a chosen target individual. But as Travers
and Milgram themselves emphasized, it was also the case
that most of the chains that started—roughly 80% in their
case—never reached the target. Subsequent experiments [6,
11, 17, 22, 23, 32] have demonstrated much the same pat-
tern: On the one hand, chains that reach their targets tend
to be short; but on the other hand, the rate of chain com-
pletion tends to be low. In Korte and Milgram’s follow-up
study of white senders in Los Angeles attempting to reach
one of 270 black targets in New York [17], the average length
of completed chains was 7, but the completion rate was only
13%. And in the most recently repeated small-world exper-
iment, conducted by Dodds et. al. [6], the pattern was even
more striking: Completed chains were only 4 steps long, but
only 0.4% of about 24,000 chains that started (a total of
384) reached their targets.

References to “six degrees of separation” [10] typically em-
phasize the first of these results—that completed chains tend
to be short—but here we wish to emphasize the second find-

ing that the vast majority of chains never reach their ulti-
mate target, and therefore that most of the desired data on
chain length is effectively missing. Determining what chain
attrition tells us about the searchability of social networks is
therefore the main object of this paper, which is organized
as follows. In the next section, we review the standard ap-
proach to handling chain attrition, and raise two possible
objections that have not been resolved by previous studies.
In Section 3, we describe data from two recent small-world
experiments, and model attrition as a function of individual
and relational attributes. In Section 4, we derive a general
correction for missing data based on the classical statisti-
cal idea of importance sampling. In Section 5 we estimate
chain length distributions based on the attrition model and
the importance sampling estimator. We find that although
the median chain length is consistent with earlier estimates,
the mean is significantly longer than previously believed. Fi-
nally, in Section 6, we close with a discussion of the new evi-
dence, concluding that the usual interpretation of the small-
world hypothesis requires some caveats.

2. RELATED WORK
The conventional wisdom regarding chain attrition in small-

world experiments, initially proposed by White [39], is that
message chains terminate for reasons that are unrelated ei-
ther to the topology of the underlying network, or to the
search process. Rather, it is assumed that participants fail
to pass on messages either because they are not sufficiently
motivated to do so, or else because they fail to receive them
in the first place. Message passing can therefore be viewed
as a stochastic process that takes place on some network,
where the only parameter governing the success of a search
is the probability of termination at each step.1

A convenient feature of this stochastic attrition interpre-
tation is that it can be invoked to derive estimates of the
“true” length of chains—that is, the length distribution of
chains that would have been observed had no attrition taken
place. In particular, White [39] proposed the estimator

p̂l =
p̃lQl−2

j=0(1− rj)
(1)

where p̂l is an estimate of the“true”percentage of paths with
length l, p̃l is the observed percentage of completed chains
with length l, and rj is the probability of attrition from step
j to step j + 1. In deriving this estimator, White assumed
that individuals who knew the target directly would always
pass on the message; thus“last-step attrition”would be zero.
Although plausible, this assumption is not inevitable, nor
was it based on empirical evidence. Dodds et al. [6] therefore
removed this assumption, resulting in the estimator

p̂l =
p̃lQl−1

j=0(1− rj)
(2)

which is identical to (1), except that the product in the de-
nominator is from j = 0 to j = l− 1. Importantly, it follows
from either estimator that the “true” average path length is
longer than that for observed chains, for the simple reason
that longer chains are more likely to terminate than shorter
chains. For example, White estimated that in the absence

1In the original Travers and Milgram experiment, for exam-
ple, roughly 75% of messages were passed on at each step,
corresponding to a 25% “attrition rate.”



of attrition, Milgram’s experiment would have yielded chain
lengths in the vicinity of eight steps, not six. The result-
ing estimates, however, are still “short” in the sense of being
comparable to that of an equivalent random graph (i.e., of
the same size and average density); thus the upshot of these
methods, and the conclusion of most previous studies, is
that as long as the stochastic failure assumption is reason-
able, then it would appear that the observation of even a
small fraction of short chains in small-world experiments is
sufficient to support the algorithmic small-world hypothesis.

An alternative interpretation of results from small-world
experiments, however, takes direct issue with the stochastic
attrition assumption, contending that low completion rates
should be seen not merely as missing data, but as evidence
that most pairs of individuals are not connected by short,
navigable paths. For example, Kleinfeld [15] has argued that

The research on the small-world problem sug-
gests not a counter-intuitive triumph of social re-
search, but an all-too familiar pattern: We live
in a world where social capital, the ability to
make personal connections, is not wide-spread
and more apt to be a possession of people of
higher social status. Many small worlds do ex-
ist, such as scientists with worldwide connections
or university administrators at a single campus.
Rather than living in a “small, small world,” we
may live in a world that looks a lot like a bowl of
lumpy oatmeal, with many small worlds loosely
connected and perhaps some small worlds not
connected at all.

Objections of this kind raise two distinct ways in which
low completion rates may be systematically related to the
searchability of the network itself. First, it may be the
case simply that some people are good at conducting so-
cial searches, while others are not. Exceptionally deter-
mined or resourceful individuals, that is, may be able to
construct short paths to distant targets; but most people
lacking such “social capital” [5, 29] are effectively isolated
from one another. A second objection, compounding the
first, is that chains terminate because most source-target
pairs live in effectively separate populations that can only
be reached via long or otherwise undiscoverable paths—that
is, “many small worlds, loosely connected.” Thus, pairs of
individuals who are already “close”, in the sense of sharing
social, geographical, and demographic attributes, can find
each other, but “distant” pairs cannot. Because, moreover,
many more pairs are distant than close, the bulk of mes-
sage chains should not be expected to complete—as indeed
is observed in small-world experiments.

Although distinct, both objections call into question the
veracity of the estimators (1) and (2). Specifically, the
first objection implies that chain attrition is not merely a
function of unrelated extrinsic factors, as assumed by the
stochastic attrition hypothesis, but rather reflects variability
among individuals. Accordingly, one would expect chain at-
trition to correlate strongly with individual-level attributes
such as education, income, and so on, that are typically
related to social capital [5, 29]. Meanwhile, the second
objection—that many source-target pairs live in “distant”
groups—implies that long chains are not being counted in
the estimation procedure, and that the resulting estimators
are therefore biased. Because the estimators (1) and (2) fail

to account for heterogeneity in attrition, and also neglect
to provide any guarantee that they are unbiased, one might
suspect that the “true” chain length estimates are higher—
possibly much higher—than conventional wisdom allows.

In what follows, we examine data from two small-world ex-
periments more systematically than in previous studies, and
introduce an estimator that is (a) provably unbiased, and (b)
allows for heterogeneous attrition rates. We find support for
each of the interpretations discussed above: Specifically, the
median “true” chain length (i.e. in a hypothetical experi-
ment with zero attrition) can be estimated robustly to be
about 6-7; however, the mean of this distribution is likely to
be much larger. In other words, at least half of all chains
that start would be expected to reach their targets within
about six steps; but at least some chains should be expected
to be very long, consistent with the claim that some pairs of
individuals are extremely unlikely to be able to locate each
other.

3. MODELING ATTRITION
Our data come from two recent experiments—one of which

has been reported on previously [6]—that were designed to
replicate Milgram’s small-world method, except using email
instead of physical packets, a change that permitted access
to a much larger and more diverse population than was avail-
able to Milgram, and at lower cost [3]. The first of these
experiments was conducted between December 2001 and
August 2003; and the second version followed immediately
thereafter, and ran until December 2007. In the first exper-
iment, 98,865 people from 168 countries initiated 106,295
chains directed at 18 targets in 13 countries. In the second
experiment, 85,621 people from 163 countries participated
in 56,033 chains, directed at 21 targets in 13 countries. In
both cases, participants were mostly from the United States
and Western Europe, were predominantly white and Chris-
tian, and were largely young, college-educated, middle-class
professionals.2

The results exhibit the same combination of short path
lengths and low completion rates that typify small-world

2Five targets were recruited directly by members of the re-
search teams, and the remaining targets were selected from
more than 4,000 volunteers (recruited via the website) with
the aim of achieving as diverse a pool as possible. Initial
senders were recruited from among people who had heard
about the experiment from the media or by word of mouth,
where, in order to obtain as many participants as possi-
ble, there was no attempt to control the characteristics of
senders. Participants registered at the website and were
asked to reach target persons, with the restriction that they
could only advance the chain through people whom they al-
ready knew. The following message was then emailed to the
chosen recipients:

We are testing the idea that everyone in the world
can be reached through a short chain of social ac-
quaintances. Your objective is to use your social
connections to move a message “closer” to a par-
ticular “target” person.

Upon receiving this message, recipients had to verify
whether they knew the senders and then send the message
on to another person whom they knew; and this process
continued until the target was reached. Thus, they created
a series of message chains from initiators to targets. The
experiment also recorded demographics data and relational
attributes (type, origin, strength of relationship, and reasons
for choosing recipients) between senders and recipients.



experiments. The completion rates for these experiments,
however, were much lower than those recorded by Milgram
and his colleagues: whereas Travers and Milgram experi-
enced roughly 20% completion, in Experiment 1, a total of
491 chains (0.5%) successfully reached their targets3; and
in Experiment 2, the completion rate was 0.1% (61 chains).
These ultra-low completion rates are directly attributable
to the peculiar design of the small-world method, in which
chain completion rates diminish exponentially with chain
length.4

In order to address the first critique, above, that the
estimators (1) and (2) do not account for individual-level
heterogeneity, we first need to model attrition in terms of
individual-level attributes, like socioeconomic status, gen-
der, education, and age, that are typically associated with
differences in social capital [5, 29]. Unfortunately, measur-
ing the impact of individual attributes on chain attrition is
complicated by another feature of small-world experiments:
The majority of people who did not continue chains never
came to the experiment website; thus we do not have data
on their individual attributes. As a substitute, therefore,
we instead estimate the “next-step continuance” probabil-
ity: Given an individual A who forwards the message to B
(and assuming B is not the ultimate target), we estimate
the probability that B continues the chain. In this sense,
we are effectively modeling the “search ability” of our par-
ticipants (i.e., their ability to choose someone who will pass
along the message). As such, our model also includes rela-
tional attributes (between A and B) and is adjusted for the
target. In total, we analyzed 88,875 sender-recipient pairs5,
of which 32% of pairs comprised recipients who forwarded
messages (continued links), and 68% comprised recipients
who did not (terminated links).

We estimate the next-step continuance probability by lo-
gistic multilevel regression (also known as “hierarchical lin-
ear modeling”), a standard statistical tool for modeling data
with group structure [7]. In our case, for example, “high
school,” “college” and “graduate school” would be separate
groups in the category of education. Multilevel regression

3Although we have used the same raw data as Dodds et
al. [6], changes in our coding and some subsequent clean-
ing of the data have resulted in somewhat different figures
for number of participants and completed chains. There are
three main reasons for these discrepancies. First, we now
include a number of chains that were originally excluded by
Dodds et al [6] because they contained unidentified individ-
uals. Second, Dodds et al. [6] required actual emails to be
sent between two people in order to establish a connection.
After closer examination, however, we found that there were
people-especially those directly adjacent to targets-who re-
ceived more than one message but who had forwarded only
one. Here we count a connection whenever we know that it
exists from previous email exchanges; thus we have a higher
total number for both incomplete and completed chains. Fi-
nally, we have added three demographic variables (ethnic-
ity, work industry, and work position) that were inaccessible
previously due to many participants answering the “other”
category. We solved the problem by checking manually all
uncategorized answers and putting them into relevant cate-
gories.
4For example, if 100,000 chains are initiated with a 25%
constant attrition, in six removes there are 1780 chains left,
whereas with a 67% attrition rate, only 129 survive.
5By contrast, we note that there were only 491 completed
chains; thus by studying links instead of completed chains,
we dramatically increase the number of relevant data points.

can be thought of as a compromise between two extreme
approaches to pooling data from different groups: no pool-
ing and complete pooling. No pooling corresponds to treat-
ing different groups within the same category as unrelated;
thus one would fit distinct parameters for each group (e.g.
high school versus college) without imposing any relation-
ship amongst them. By contrast, complete pooling effec-
tively corresponds to ignoring the presence of groups within
a particular category; for example, treating all individuals
as the same regardless of educational status. In the middle
ground of multilevel models, one allows for the possibility
that groups within a category are related, without specify-
ing a hard constraint on the strength of their relationship.
Specifically, our model is of the form

P(yi = 1) = logit−1(γ + βnonwhiteXnonwhite,i

+ βfemaleXfemale,i + αj1[i] + αj9[i])

where the outcome variable yi indicates the next-step con-
tinuance, γ is the intercept, the two β terms are fixed effects
for female and nonwhite participants respectively, and the
αjk[i] correspond to the nine group effects. For each cate-
gory k (e.g., education), jk[i] is the group (e.g., high school,
college, graduate school, etc.) of the ith response, and we
model the group parameters within each category as coming
from a normal distribution: αjk[i] ∼ N(0, σ2

k). The subscript
jk[i], in other words, can be thought of as a mapping from a
particular response i to a particular group jk[i] within cat-
egory k.

Our model therefore includes a total of 66 parameters:
an overall intercept term; one parameter each for gender
(male/female) and race (white/non-white); 54 distinct at-
tribute parameters, which in turn are grouped into nine cat-
egories6 (age, education, work field, work position, income,
strength of relationship with message recipient, reason for
choosing recipient, origin of relationship with recipient, and
target); and one variance parameter for each category. The
estimated attrition rate for a particular individual (e.g., fe-
male, 30-39 years old, with a college degree, etc.) is obtained
by adding together the relevant terms in the model, and tak-
ing logit−1 of the sum. The variance parameters σ2

k indicate
how closely related the groups are within each category k,
and themselves are inferred from the data; large variance
corresponds to weak association of groups (i.e. no pooling),
and small variance corresponds to strong association (i.e.
complete pooling).

Table 1 shows the standard deviations σk for the nine cat-
egories7 (first column). Although these σk capture the typi-
cal effect of the category on attrition, they do so on the logit
scale, which is difficult to interpret. To aid interpretation,
therefore, these values are translated in the second column
to a probability scale that is relative to the baseline attrition
rate. For example, differences between targets account for
a 2% absolute change in attrition rates, while differences in
the education of senders accounts for 3%. Since the baseline
attrition rate is 30%, a 2% absolute change corresponds to a
7% relative change. Furthermore, as discussed below, these
differences are amplified by the correlation of attributes to-

6We found religion, country, type of relationship, and cur-
rent chain length were not statistically significant predictors.
7Although is is difficult to compute overall standard errors
for the variance parameters, Table 2 states standard errors
for each group-level coefficient within every category.



Table 1: Category standard deviation parameters
from a multilevel logistic regression model of next-
step continuance probabilities. Attrition is stated as
typical deviation from the baseline of 30% for white
males.

Category σk Attrition

Target 0.09 ± 0.02
Age 0.12 ± 0.02
Relationship Origin 0.04 ± 0.01
Income 0.07 ± 0.01
Work Position 0.03 ± 0.01
Work Field 0.08 ± 0.02
Reason for Choosing Recipient 0.05 ± 0.01
Relationship Strength 0.11 ± 0.02
Education Level 0.14 ± 0.03

gether with the compounding effects of chain-based message
propagation.

Table 2 develops this analysis, where now we examine the
effects of individual and relational attributes on the next-
step continuance probability, relative to the baseline attri-
tion of 30% (for typical white males). Each row in Table 2
corresponds to a group (e.g., “college” and “18-29”) within
the nine attribute categories (e.g., “education” and “age”),
as well as the overall intercept, and the two fixed effects for
females and non-whites. For any given group (i.e., row in
the table), the first table column is the estimated coefficient
for that group8, along with its associated standard error;
and the second column gives the corresponding effect on the
next-step continuance rate.

Consistent with our interpretation of Table 1, Table 2 re-
veals a small but significant range of attrition rates, with
individuals possessing the attributes of high social capital
associated with higher continuance probabilities: possessing
a graduate education, for example, increased pass-along by
4% above the baseline, whereas having only a high-school
education diminished it by 3%; and whereas participants
earning over $100,000 were 2% more likely than average to
pass along a chain, those earning less than $25,000 were
1% less likely. As one might suspect, individual-level het-
erogeneity in attrition rates tends to be correlated across
attributes (e.g., high education is associated with high in-
come); thus the overall distribution of estimated attrition
rates for participants is considerably greater than is indi-
cated by any single group effect, with attrition rates varying
from 60% to 80%, as shown in Figure 1.

Overall, therefore, our analysis shows that high status in-
dividuals are more likely to pass along messages to friends
who again pass them along, and that these differences, once
compounded over multiple attributes, can be large. One
might also note, however, that the distribution in Figure 1
is sharply peaked around the mean; thus although individual
differences can be large, they are typically small. Regard-
less, the homogeneity assumption used in estimators (1) and
(2) is clearly invalid. To understand the relation between
attrition and chain completion, therefore, we require an es-
timator that can account for heterogeneous attrition rates.
We also wish to address the second criticism raised in Sec-

8Since gender and race are fixed effects in our model, we use
white males as a baseline group.

Table 2: Coefficient estimates from a multilevel
logistic regression model of next-step continuance
probabilities. The probabilities are stated as devia-
tion from the baseline of 30% for white males.

Attributes Coef. (S.E.) Probability

Age
Under 17 0.038 (0.11) 0.01
18-29 0.14 (0.06) 0.03
30-39 0.090 (0.06) 0.02
40-49 -0.068 (0.06) -0.01
50-59 -0.071 (0.06) -0.02
Above 60 -0.13 (0.07) -0.03

Education Level
Graduate school 0.18 (0.08) 0.04
College/University 0.014 (0.08) 0.0
High school -0.14 (0.08) -0.03
Elementary school -0.048 (0.11) -0.01

Work Field
Media/Advertising/Arts 0.098 (0.05) 0.02
Education/Science 0.059 (0.04) 0.01
IT/Telecommunication -0.018 (0.05) 0.0
Government -0.056 (0.05) -0.01
Other -0.084 (0.04) -0.02

Work Position
Specialist/Technical 0.028 (0.03) 0.01
Student 0.016 (0.03) 0.0
Other 0.00049 (0.02) 0.0
Unemployed/Retired -0.0045 (0.03) 0.0
Executive/Manager -0.040 (0.02) -0.01

Income
More than $100,000 0.076 (0.04) 0.02
$50,000 - $100,000 0.052 (0.04) 0.01
$25,000 - $49,999 -0.0078 (0.04) 0.0
$2,000 - $24,999 -0.056 (0.04) -0.01
Less than $2000 -0.064 (0.05) -0.01

Relationship Strength
Extremely close 0.13 (0.06) 0.03
Very close -0.013 (0.05) 0.0
Fairly close 0.05 (0.05) 0.01
Casually -0.0093 (0.05) 0.0
Not close -0.16 (0.07) -0.03

Reason for Choosing
Recipient
Profession 0.033 (0.04) 0.01
Education 0.031 (0.04) 0.01
Work brings contact 0.020 (0.04) 0.0
Geography -0.010 (0.03) 0.0
Other -0.074 (0.03) -0.01

Relationship Origin
Work 0.043 (0.03) 0.01
School 0.025 (0.03) 0.0
Internet 0.014 (0.03) 0.0
Mutual friend -0.013 (0.03) 0.0
Relative -0.028 (0.03) -0.01
Other -0.041 (0.03) -0.01

Fixed Effects
Intercept -0.85 (0.12) NA
Female -0.063 (0.025) -0.01
Nonwhite -0.13 (0.041) -0.03
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Figure 1: The estimated distribution of attrition
over individuals. Average attrition 0.7.

tion 2, which is that the estimators (1) and (2) have not
been proven to be unbiased, and therefore may not account
correctly for the presence of long, but unobserved chains.

4. CORRECTING FOR MISSING DATA
We address both these problems by introducing a general

technique to correct for missing data based on the classical
statistical idea of importance sampling. Although at a high
level importance sampling is similar to estimators (1) and
(2), its more rigorous formulation permits us to guarantee
that estimates are unbiased, and to specify errors on the
estimates. It also allows us to incorporate heterogeneous
attrition rates in a straightforward manner

Intuitively, our estimation procedure works in the follow-
ing manner. For each non-missing data point (i.e., com-
pleted chain), we estimate the likelihood of that data point
having been observed. We then re-weight the non-missing
values to account for the fact that some of the data points
were more likely to have been observed (i.e., the shorter
chains) than others (i.e., the longer chains). More formally,
we consider the space of all possible paths between all pairs
of individuals. In this hypothetical space, there may be
many paths that connect any two given individuals, and so
we reasonably assume that some paths are more likely to be
traversed than others. In an ideal small world experiment
without attrition, we would repeatedly observe the lengths
of these random paths between random pairs of individuals.
In the more general setting, we suppose there is a discrete
outcome space Ω (e.g., the space of paths) that is equipped
with a probability P (e.g., P describes the likelihood of se-
lecting any particular path amongst all paths between all
pairs of individuals). An experimental trial corresponds to
observing an outcome (e.g., a path) ω ∈ Ω drawn with prob-
ability P .

In the case of missing data, however, we do not always get
to see the uncorrupted outcome ω ∈ Ω (e.g., the path). To
model this missing data situation, we suppose that after an
outcome ω is drawn, it is observed with probabilityQ(ω) and
reported missing with probability 1 − Q(ω). In our small-
world setting, “missing” corresponds to an incomplete chain,
and due to attrition, Q(ω) is generally smaller for longer

paths—longer “true” paths are more likely to be “observed”
as incomplete chains9. Hence, the outcome ω ∈ Ω is ulti-
mately “observed to complete” with probability P (ω)Q(ω).
In particular, summing over all possible outcomes, a non-
missing value is observed on a given trial with probabilityP
ω P (ω)Q(ω), and a missing values is observed with prob-

ability 1−
P
ω P (ω)Q(ω). Let X1, . . . , Xn denote n such in-

dependent trials (in this case, n is the total number of chains
that are initiated), where Xi is either an uncorrupted obser-
vation (e.g., a completed chain) or a missing value (e.g., an
incomplete chain). That is, Xi ∈ Ω∪{NA} where NA denotes
a missing value.

The “true” expected chain length without attrition µ can
be expressed as a weighted average over the space of all paths
(higher weights correspond to more likely paths):

µ =
X
ω

f(ω)P (ω)

where f(ω) denotes the length of the path ω10. Without
missing values (i.e., Q(ω) = 1), the usual unbiased estimator
for µ is the sample average 1

n

Pn
i=1 f(Xi). With missing

values, (i.e., Q(ω) < 1), averaging over all the non-missing
values in the sample biases our estimate toward outcomes
that we are more likely to observe11. We adjust for this
biased observation of outcomes by re-weighting samples by
their inverse probability of observation, an idea based on the
classical statistical technique of importance sampling. This
re-weighting results in an unbiased estimator, as given in
Theorem 1.

Theorem 1. In the general setting described above, an
unbiased estimate of the mean µ =

P
ω f(ω)P (ω) is given

by

µ̂ =
1

n

mX
i=1

f(Xki)

Q(Xki)

where Xk1 , . . . , Xkm are the m observed, non-missing values,
and Q(ω) is the probability that ω is observed uncorrupted
after it has been sampled.

Proof. First extend f to a function f̄ defined on Ω∪{NA}
(where NA denotes a missing value), by setting f̄(ω) = f(ω)
for ω ∈ Ω and f̄(NA) = 0. Then we can rewrite the estimator
as

µ̂ =
1

n

nX
i=1

f̄(Xi)

Q(Xi)

where the sum is taken over all samples (including the miss-
ing values). Since the samples Xi are identically distributed,

9We emphasize that our use of the term “observed” cor-
responds to its usage in probability theory—that is, as a
random trial in an experiment—and does not imply that
the chain is observed to complete. Indeed, the point is that
most chains that are“observed”in the statistical sense do not
complete. Thus one should think of all chains as being ob-
served, where some (a minority) are “observed to complete,”
while others (a majority) are “observed not to complete.”

10More generally, we might be interested in the expectation
of an arbitrary function f .

11We emphasize again that this problem is particularly egre-
gious in the case of estimating chain lengths, since the prob-
ability of observing a chain tends to decrease exponentially
with its length; thus we are much more likely to see short
chains, and hence underestimate mean chain length.



Eµ̂ = E[f̄(Xi)/Q(Xi)]. Finally, since ω is observed non-
missing with probability P (ω)Q(ω), and f̄(NA) = 0, we have

E
»
f̄(Xi)

Q(Xi)

–
=
X
ω∈Ω

f(ω)

Q(ω)
P (ω)Q(ω) =

X
ω∈Ω

f(ω)P (ω) = µ.

Hence, µ̂ is unbiased.

Theorem 1 shows that µ̂ generates an unbiased estimate
of µ =

P
ω f(ω)P (ω) for any function f . When f(ω) is the

length of a chain ω, then µ̂ estimates the mean chain length.

µ̂ =
1

n

mX
i=1

L(Xki)

Q(Xki)
(3)

where Xk1 , . . . , Xkm are the m observed completed chains,
L(ω) is the length of chain ω, and n is the total number of
complete and incomplete chains in the sample. Theorem 1
can also be used to estimate the entire chain length distribu-
tion. Set fi(ω) = 1 if ω is a chain of length i, and fi(ω) = 0
otherwise. Then the expectation of fi is given by

pi =
X
ω∈Ω

fi(ω)P (ω) =
X

ω is of length i

P (ω).

That is, pi is the probability that a randomly chosen chain
has “true” length i. Applying Theorem 1 to this indicator
function fi yields an unbiased estimate of pi:

p̂i =
1

n

mX
j=1

fi(Xkj )

Q(Xkj )
=

1

n

24 X
Xk has length i

1

Q(Xk)

35 . (4)

Computing p̂i for i = 1, 2, . . . gives an approximation of the
true chain length distribution, and in particular, allows us to
estimate the true median chain length in an idealized world
without attrition.

Theorem 1 shows that µ̂ is unbiased; Corollary 1, below,
derives the variance of µ̂, and in particular, shows that the
variance of µ̂ increases as the probability of observationQ(ω)
decreases. That is, when data are more likely to go missing,
our estimates are understandably more variable.

Corollary 1. The variance of µ̂ satisfies

Var(µ̂) =
1

n

" X
ω∈Ω

f2(ω)
P (ω)

Q2(ω)

!
− µ2

#
.

Proof. Using the notation of Theorem 1, by indepen-
dence,

var(µ̂) =
1

n
var

„
f̄(X1)

Q(X1)

«
.

Since µ̂ is unbiased,

var

„
f̄(X1)

Q(X1)

«
= E

„
f̄2(X1)

Q2(X1)

«
− µ2

=

 X
ω∈Ω

f2(ω)
P (ω)

Q2(ω)

!
− µ2

and the result is shown.

In Corollary 1, the variance of µ̂ is expressed in terms of
the “true” probability of selection P (ω), which is not usually
available in applications. Hence, the variance cannot gen-
erally be computed directly by this formula. Furthermore,

in practice variability in estimates of the mean is further
increased by noise in estimates of attrition (i.e., noise in es-
timates of Q(ω)). We account for these two sources of vari-
ance by a modified bootstrap sampling procedure described
in Section 5.

5. ESTIMATING CHAIN LENGTHS
Applying the attrition model of Section 3 together with

the missing data correction of Section 4, we now estimate
the“true”chain length distribution based on the small-world
data. We start by examining the Travers and Milgram [34]
data, and the Dodds et al. [6] data, under the assumption
of homogeneous attrition; and then proceed with the main
analysis, an investigation of chain length with heterogeneous
attrition.

Homogeneous Attrition. For estimation based on the ho-
mogeneous attrition model, we assume that individuals ter-
minate chains (i.e., they do not forward messages) with
probability r, independent of their personal attributes; hence,
individuals independently forward messages with probabil-
ity 1 − r. Since a chain ω of length L(ω) reaches its target
only if each individual in the chain forwards the message,
in the homogeneous attrition model the chain is observed as
complete with probability Q(ω) = (1− r)L(ω).

We generate generate confidence intervals for our esti-
mates by bootstrap sampling. From the original set of n
complete and incomplete chains, we first resample n chains
with replacement, generating a bootstrap sample S1, where
we note that in the sample some of the original chains appear
more than once while others do not appear at all. Repeat-
ing this resampling procedure k = 10, 000 times produces k
bootstrap samples S1, . . . , Sk where each sample Si is itself
a random resampling of the original data. These randomly
generated sets of chains simulate what would have been ob-
served had we been able to repeat the entire experiment k
times; thus we can obtain k estimates of the “true” mean
chain length12. The confidence interval for the mean chain
length is then defined by the range of the middle 95% of
these k bootstrap estimates.

In the Travers and Milgram data, we empirically find an
attrition rate of r = .25, and so have Q(ω) = (.75)L(ω). Ap-
plying the estimator (3) with this choice of Q(ω) yields an
estimated “true” mean of 11.8 (95% CI: 8.5-15), compared
with the observed mean 6.2. The estimator (4) correspond-
ingly allows us to approximate the entire chain length distri-
bution, from which a median of 7 (95% CI: 6-7) is computed,
in approximate agreement13 with the previously reported
median of 8 [39].

Next we consider the Dodds et al. [6] data, again un-
der a homogeneous attrition assumption. Here, however,
we consider a more nuanced attrition model in which the

12We apply the same estimator (3) to each “experiment” but
because the data given to the estimator changes with each
bootstrap sample, we obtain different estimates.

13The agreement is even closer than it seems, on account of
additional assumption made by White that senders at the
last remove, being personally acquainted with the target (by
definition) would always (i.e. with 100% likelihood) pass on
the letter. As noted earlier, by effectively increasing the
probability that chains would complete, this assumption ac-
tually increases the estimated chain length by one, versus
the alternative assumption (made by Dodds et al. [6]) that
all links were equally susceptible to attrition. Thus White’s
estimate of 8 is essentially the same as our estimate of 7.



first individual in a chain has attrition r0 = .41 and all the
remaining individuals in the chain have attrition r = .70.
These values of attrition were empirically determined from
the data, and the substantial difference found between r0

and r motivates our decision to treat them separately14. To
reach the target, the chain initiator must first forward the
message to the second participant in the chain (which hap-
pens with probability 1 − r0), and then each of the next
participants must also forward the message (which occurs

with probability (1−r)L(ω)−1). Consequently, in this model,
the probability Q(ω) that a chain reaches its target (i.e., is
observed as complete) is given by

Q(ω) = (1− r0)(1− r)L(ω)−1 = (1− .41)(1− .70)L(ω)−1.

With this choice of Q(ω), the estimator (3) for mean chain
length and the estimator (4) for the full chain length distri-
bution yield a “true” mean length of 41.5 (95% CI: 20-68)
and a robust median of 6 (95% CI: 6-6). This estimate of
the median is in agreement with Dodds et al.’s estimated
range of 5-7 [6].

Heterogeneous Attrition. We now proceed with the main
analysis, estimating the chain length distribution while al-
lowing for heterogeneous attrition, as modeled in Section 3.
Recall that due to limits in the experimental design, we es-
timate the “next-step continuance” probability: Given an
individual A who forwards the message to B (and assuming
B is not the ultimate target), we estimate the probability
that B continues the chain based on A’s attributes. In par-
ticular, the next-step continuance probability is a function of
A’s gender, race, age, education, work field, work position,
income, strength of A’s relationship with B, A’s reason for
selecting B, origin of A’s relationship with B, and the final
target.

We first define the probability Q(ω) of observing a com-
pleted chain in this heterogeneous attrition model. For a
chain ω of length L(ω), enumerate the links in the chain by
ω0 → ω1, ω1 → ω2, . . . , ωL(ω)−1 → ωL(ω), and let rωi→ωi+1

denote the probability that the ith participant in the chain
fails to forwards the message. We assume the chain ini-
tiator fails to forwards the message with fixed probability
rω0→ω1 = .41, found empirically from the data. For i > 1,
rωi→ωi+1 is estimated from the next-step continuance model

of Section 3 based on the attributes of the (i − 1)st partic-
ipant in the chain ω. For example, if the (i − 1)st partic-
ipant in ω is a 20-29 year-old white male with a graduate
degree, etc., we may estimate rωi→ωi+1 = .67. Combining
these continuance probabilities from each step, we define the
probability of observing a complete chain (i.e., a chain that
makes it to its target) by

Q(ω) = (1− rω0→ω1) (1− rω1→ω2) · · ·
“

1− rωL(ω)−1→ωL(ω)

”
.

To generate confidence intervals for estimates based on
heterogeneous attrition, we require a slightly more compli-
cated bootstrap sampling method than for the homogeneous
case above, as now we also need to account for uncertainty

14The reason for the much lower attrition at the first step
derives from the nature of the experiment, which relied on
initial senders signing up at the web site to participate. Nat-
urally, subsequent senders in a given chain did not volunteer,
but were instead recruited by previous senders; thus were
presumably not as motivated to complete the exercise as
those who volunteered to initiate the chains.
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Figure 2: The estimated CDF of chain length un-
der the heterogeneous attrition model. Error bars
indicate 95% confidence intervals.

in our estimates of attrition, which in turn translates to un-
certainty in Q(ω). As in the case of homogenous attrition,
bootstrap samples S1, . . . , Sk are generated by resampling
n = 162, 328 chains from the original set of n complete and
incomplete chains. Each bootstrap sample is a simulated
dataset that mimics what could have occurred had the entire
small-world experiment been repeated. Next, we simulate

vectors of regression coefficients ~β1, . . . , ~βk for the attrition

model of Section 3, where each vector of parameters ~βi is a

complete set of coefficients for the model. In particular, ~βi
consists of parameter values for each group-level effect (e.g.,
“graduate school” and “20-29”), and allows one to estimate
next-step continuance probabilities for given attribute data.
These vectors of coefficients are generated by taking into
account both the uncertainty in individual parameters, and
the correlation between parameters15. In short, for a given

chain ω, each coefficient vector ~βi produces different esti-
mates for the probability rωi→ωi+1 of failing to forwarding a
message across each link in the chain, and hence generates
different estimates of the probability Q~βi

(ω) that the chain
ω is observed, reflecting uncertainty in the attrition model.
The mean for each bootstrap sample Si is computed by way
of the observation probability Q~βi

(·), as derived from the

attrition model with parameter vector ~βi. As before, this
procedure results in k = 10, 000 different estimates of the
mean chain length, and the reported confidence interval is
the range of the middle 95% of these estimates.

Appealing as before to the estimators (3) and (4), we
find the mean under this heterogeneous attrition model is
22 (95% CI: 4.5-57.5), and the median is 7 (95% CI: 6-8.5).
Estimation of mean chain length is clearly sensitive to un-
certainty in estimates of the probability of observation Q(ω),
resulting in a wide confidence interval. The median, how-
ever, appears to be much more stable. The entire estimated
cumulative distribution function (CDF) for chain length is
shown in Figure 2. Since there are relatively few long chains,
the variance in the estimated CDF grows with chain length.

Randomized Attrition. One possible objection to these
estimates is that since individuals in completed chains by

15In a Bayesian interpretation, the coefficient vectors are gen-
erated from a “non-informative” prior, and represent config-
urations of parameters that are consistent with the data (see
Gelman & Hill [7], Section 7.2).



definition must have passed on messages, we are at risk of
over-fitting the attrition probabilities, mistakenly inferring
that attributes of participants who happen to be in com-
pleted chains predict lower attrition rates. Indeed, the aver-
age estimated attrition for individuals in completed chains
is 3% lower than the average estimated attrition for individ-
uals in incomplete chains.

To address this possibility of over-fitting, we consider a
second heterogeneous attrition model, in which attrition prob-
abilities Ri are randomly generated from the distribution of
estimated attrition rates shown in Figure 1. That is, we
assume individuals have attrition rates that are randomly
drawn from this estimated population distribution, and de-
fine the probability of observing a completed chain ω of
length L(ω) to be

Q(ω) = (1−Rω0)(1−Rω1 · · · (1−RωL(ω)−1).

Each individual in each chain is independently assigned an
attrition rate chosen from the population distribution. Again
invoking the estimators (3) and (4), we find that under this
modified attrition model, the “true” mean chain length is
now 49 (95% CI: 37-63), where confidence intervals are gen-
erated in analog to the previous heterogeneous attrition case.
Also as before, we estimate the median, which we find to be
6 (95% CI: 6-6).

All four estimates—one based on Travers and Milgram’s
data; and three based on the experiments described above
under assumptions of (a) homogenous attrition; (b) empiri-
cally observed heterogeneous attrition; and (c) randomized
heterogeneous attrition—are presented in Table 3, which
prompts three observations. First, estimates of the median
are extremely stable, with all four procedures predicting a
“true” median chain length in the range of 6-7 steps; thus,
for approximately half the population, the claim that “ev-
eryone is connected by six degrees of separation” appears to
be valid not only in the topological sense, but also in the
algorithmic sense. Second, in contrast with the median, es-
timates of the mean are extremely unstable, ranging from
11.8 to 49 steps, and with 95% confidence intervals ranging
from 4.5 to 68. That estimated means can vary so wildly as
a function of different assumptions about the heterogeneity
of attrition is perhaps not surprising given the known sen-
sitivity of chain completion to attrition, but it does suggest
that any conclusions regarding the mean should be treated
with caution. In spite of this, however, a third conclusion
appears warranted—namely that at least some, and possibly
many, chains are much, much longer than the median. Thus
although the algorithmic small-world phenomenon appears
to be satisfied for at least half the population, it also appears
not to be satisfied for at least some fraction.

6. CONCLUSION
In concluding, we return to the distinction posed in the In-

troduction between the topological and algorithmic versions
of the small-world hypothesis. Empirically, the most strik-
ing contrast between the two is that whereas in our analysis,
we find very large differences between the mean and the me-
dian path lengths, studies of topological path lengths typi-
cally find that the two measures are almost interchangeable:
in the largest such study to date, for example, Leskovec and
Horvitz [20] found that the mean shortest path length was
6.6 while the median was 7. Precisely why topological and
algorithmic path lengths differ in this manner is ultimately

Table 3: Summary of “true” average algorithmic dis-
tance under homogenous and heterogeneous attri-
tion models.

Model Mean
(95% CI)

Median
(95% CI)

Homogeneous attrition
(Travers/Milgram)

11.8 (8.5-15) 7 (6-7)

Homogeneous attrition
(Dodds et. al.3)

41.5 (20-68) 6 (6-6)

Heterogeneous attrition
(Dodds et al.3)

22 (4.5-57.5) 7 (6-8.5)

Randomized attrition
(Dodds et al.3)

49 (37-63) 6 (6-6)

unclear; however, it probably derives from the observation
that the number of steps in a search chain depends not only
on the actual (i.e. topological) distance between the source
and target, but also on the search strategies of the interme-
diaries. Two individuals, in other words, may be the same
distance from a given target, but if one has a better search
strategy, the resulting chain will be shorter. Moreover, if
one sender merely perceives the task to be easier, the two
chains may experience different outcomes—for example, one
may terminate while the other continues—thus leading to
the appearance of a difference in difficulty when in fact the
“real” difficulty is the same. Given only a set of complete
and incomplete chains, therefore, it is arguably impossible
to determine how much of the observed differences in chain
length arise from (a) differences in topological distance, (b)
differences in search strategies, and (c) differences in beliefs
and motivations. In simulation exercises, these ambiguities
can be eliminated by assuming a search rule [13, 37], but of
course there is no guarantee that these rules resemble those
being used by the participants in real-world experiments;
thus simulations alone cannot resolve the problem either.

In principle, the problem might be resolved with an al-
ternative experimental design, in which one could sample
pairs of individuals according to their known topological dis-
tances, and also to represent a wide range of individual-level
attributes. One could then run a large number of small-
world type experiments, where participants would be drawn
from the known sample, and would be required to pass mes-
sages exclusively through the known network. By compar-
ing the lengths of completed chains with known topological
shortest paths, one could place a measure of the “true” dif-
ficulty of a search between pairs with given attributes. And
by varying incentives to participants as well as performing
follow-up surveys, search difficulty could be further parsed in
terms of differences in search strategies, perceived difficulty,
and apathy. Although non-trivial to implement, the recent
explosion of large social networking sites like Facebook, as
well as email [18] and instant messaging networks [20], at
least render such a design feasible. The results of such a
study, moreover, would not only help to settle a decades-long
debate over the effective connectivity of the social world, but
would also shed new light on the relation between individual
social capital, topological network structure, and the algo-
rithmic properties of social search.
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