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Abstract. In an attempt to make algorithms fair, the machine learning literature has largely 
focused on equalizing decisions, outcomes, or error rates across race or gender groups. To 
illustrate, consider a hypothetical government rideshare program that provides transporta-
tion assistance to low-income people with upcoming court dates. Following this literature, 
one might allocate rides to those with the highest estimated treatment effect per dollar 
while constraining spending to be equal across race groups. That approach, however, 
ignores the downstream consequences of such constraints and, as a result, can induce 
unexpected harm. For instance, if one demographic group lives farther from court, enfor-
cing equal spending would necessarily mean fewer total rides provided and potentially 
more people penalized for missing court. Here we present an alternative framework for 
designing equitable algorithms that foregrounds the consequences of decisions. In our 
approach, one first elicits stakeholder preferences over the space of possible decisions and 
the resulting outcomes—such as preferences for balancing spending parity against court 
appearance rates. We then optimize over the space of decision policies, making trade-offs 
in a way that maximizes the elicited utility. To do so, we develop an algorithm for effi-
ciently learning these optimal policies from data for a large family of expressive utility 
functions. In particular, we use a contextual bandit algorithm to explore the space of poli-
cies while solving a convex optimization problem at each step to estimate the best policy 
based on the available information. This consequentialist paradigm facilitates a more holis-
tic approach to equitable decision making.
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1. Introduction
Statistical predictions are now used to inform high- 
stakes decisions in a wide variety of domains. For 
example, in banking, loan decisions are based in part on 
estimated risk of default (Leo et al. 2019); in criminal 
justice, judicial bail decisions are based on estimated risk 
of recidivism (Latessa et al. 2010, Cadigan and Lowen-
kamp 2011, Milgram et al. 2014, Goel et al. 2018); in 
healthcare, algorithms identify which individuals receive 

limited resources, including HIV prevention counseling 
and kidney replacements (Friedewald et al. 2013, Ober-
meyer et al. 2019, Wilder et al. 2021); and in child services, 
screening decisions are based on the estimated risk of 
adverse outcomes (Shroff 2017, Chouldechova et al. 
2018, Brown et al. 2019, De-Arteaga et al. 2020). In these 
applications and others, equity is a central concern. In 
particular, the machine learning community has pro-
posed numerous methods to constrain predictions to 
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achieve formal statistical properties, such as parity in 
decision rates or error rates across demographic groups 
(Chouldechova and Roth 2020, Barocas et al. 2023, 
Chohlas-Wood et al. 2023a, Corbett-Davies et al. 2023).

To illustrate this traditional approach to designing 
equitable algorithms, consider a government agency 
that provides free rides for people to get to court (Brough 
et al. 2022). Missed court dates can lead to severe penal-
ties, including incarceration, and so, improving court 
appearance rates can reduce social harm (Chohlas- 
Wood et al. 2023b). When designing this program, one 
might first use historical data to estimate the effect of a 
ride on increasing each person’s likelihood of appearing 
at court, as well as the cost of providing them with a 
ride. Then, in an effort to distribute benefits fairly, one 
might allocate assistance to those with the highest esti-
mated benefit per dollar while constraining per-person 
spending to be equal across demographic groups. The 
implicit hope in past literature is that one achieves fair-
ness by imposing an axiomatic constraint on decisions: 
spending parity.

Although intuitively reasonable, axiomatic approaches 
to fairness can cause unexpected harm. For example, 
imagine members of one group live farther from the 
courthouse, making it more costly to provide them rides. 
Enforcing equal spending across groups would typically 
result in fewer rides overall and, accordingly, lower 
appearance rates. More generally, traditional axiomatic 
approaches to fairness typically do not consider the 
downstream consequences of constraints and thus fail to 
engage with the difficult trade-offs at the heart of many 
policy problems.

We propose an alternative, consequentialist frame-
work to algorithmic fairness. In this framework, rather 
than imposing fairness axioms, one begins by eliciting 
stakeholder preferences over the space of potential deci-
sions and resulting outcomes. For example, in designing 
our hypothetical transportation program, one would 
assess the degree to which stakeholders are willing to 
trade court appearances for reductions in spending dis-
parities across groups. Then, using these preferences, 
we compute a decision-making policy with the largest 
expected utility while adhering to budget constraints. 
Given historical data on decisions and outcomes, we 
show that optimal decision policies can be efficiently 
derived for a large and expressive family of utility func-
tions by solving a linear program (LP).

We further show how to efficiently learn optimal poli-
cies while rolling out new programs in the absence of 
historical data. Our approach here is inspired by the suc-
cess of Thompson sampling (Chapelle and Li 2011) and 
optimism-under-uncertainty methods (Auer et al. 2002) 
in multiarmed bandits. In contrast to the standard con-
textual multiarmed bandit setting, we consider a multi-
faceted, structured objective to account for complex 
preferences and budget constraints inherent to many 

real-world applications. As such, our actions at each iter-
ation are guided by solving an LP as above.

The rest of our paper is structured as follows. In Sec-
tion 2, we review the related literature, connecting and 
contrasting our approach to ideas in fair machine learn-
ing, fair division, multiobjective optimization, and 
reinforcement learning. In Section 3, we illustrate the 
trade-offs inherent to many policy problems—and the 
concomitant benefits of a consequentialist perspective 
over an axiomatic approach. To do so, we draw on client 
data from the Santa Clara County Public Defender 
Office to consider the costs and benefits of a hypothetical 
transportation assistance program. We also describe the 
results of a survey that gauged stakeholders’ willingness 
to sacrifice court appearances to reduce spending dispa-
rities across race groups. Given such preferences as well 
as historical data on outcomes, in Section 4, we formally 
state and solve the corresponding policy optimization 
problem. In Section 5, we theoretically derive sample 
complexity bounds on learning optimal policies in the 
absence of historical data. Finally, in Section 6, we intro-
duce and evaluate an adaptive approach to learning 
optimal policies, combining contextual bandits with the 
optimization solution described in Section 4. We end 
with some concluding thoughts in Section 7.

2. Related Work
Our work draws on research in algorithmic fairness, fair 
division, multiobjective optimization, and contextual 
bandits with budgets—connections that we briefly dis-
cuss below.

Over the last several years, there has been increased 
attention on designing equitable machine learning sys-
tems (Blodgett and O’Connor 2017, Caliskan et al. 2017, 
Shroff 2017, Buolamwini and Gebru 2018, Choulde-
chova et al. 2018, Datta et al. 2018, Goodman et al. 2018, 
Ali et al. 2019, De-Arteaga et al. 2019, Obermeyer et al. 
2019, Raji and Buolamwini 2019, Koenecke et al. 2020, 
Chohlas-Wood et al. 2023a) and associated development 
of formal criteria to characterize fairness (Chouldechova 
and Roth 2020, Gupta et al. 2020, Barocas et al. 2023, 
Corbett-Davies et al. 2023). Some of the most popular 
definitions demand parity in predictions across salient 
demographic groups, including parity in mean predic-
tions (Feldman et al. 2015) or error rates (Hardt et al. 
2016). Another class of fairness definitions aims to 
blind algorithms to protected characteristics, including 
through their proxies (Kilbertus et al. 2017, Kusner et al. 
2017, Chiappa and Isaac 2018, Nabi and Shpitser 2018, 
Zhang and Bareinboim 2018, Wang et al. 2019, Wu et al. 
2019, Coston et al. 2020, Nyarko et al. 2021, Nilforoshan 
et al. 2022).

All the above approaches conceptualize the equity of 
algorithmic decisions in terms of universal rules (e.g., 
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error rate parity) rather than considering the conse-
quences of decisions. Recent work has noted limitations 
to this axiomatic approach, which has otherwise domi-
nated the fair machine learning literature (Corbett- 
Davies et al. 2017, Cowgill and Tucker 2020, Kasy and 
Abebe 2021, Grgić-Hlača et al. 2022). Some recent excep-
tions have begun to consider algorithmic decision mak-
ing from a consequentialist perspective (Barabas et al. 
2018, Liu et al. 2018, Card and Smith 2020, Coston et al. 
2020, Donahue and Kleinberg 2020, Fang et al. 2022, Nil-
foroshan et al. 2022, Viviano and Bradic 2024). For exam-
ple, Nilforoshan et al. (2022) show that common causal 
definitions of algorithmic fairness lead to Pareto- 
dominated policies. However, although these papers 
adopt a consequentialist approach to varying degrees, 
they do not consider the problem of efficiently learning 
optimal policies, as we do here.

In a related thread of research on fair division pro-
blems, groups of individuals decide how to split a lim-
ited set of resources among themselves (Brams et al. 
1996, Bertsimas et al. 2011, Caragiannis et al. 2012, Gal 
et al. 2017). The broad aim of that work—to equitably 
allocate a limited resource—is similar to our own, but it 
differs in three important respects. First, canonical fair 
division problems seek to arbitrate between individuals 
with competing preferences (e.g., as in cake-cutting style 
problems (Procaccia 2013)), rather than adopting the 
preferences of a social planner, as we do. Second, and 
relatedly, much of the fair division literature, like the 
algorithmic fairness literature, takes an axiomatic 
approach to fairness, identifying allocations that have 
properties posited to be desirable, such as envy freeness 
(Cohler et al. 2011). Although that perspective is useful 
in many applications, it does not explicitly consider the 
preferences of policymakers, which may be incompati-
ble with these axiomatic constraints. Finally, work on 
fair division problems typically does not try to learn the 
causal effects of allocations on downstream outcomes 
from data, such as the heterogeneous effect of transpor-
tation assistance on appearance rates.

In many real-world settings, decision makers have 
competing priorities, linking our work to the large litera-
ture on learning to optimize in multiobjective environ-
ments (Zuluaga et al. 2013). Such inherent trade-offs 
have recently been considered in the fair machine learn-
ing community (e.g., Corbett-Davies et al. 2017, Cai et al. 
2020, Rolf et al. 2020); however, there has been little 
work on creating equitable learning systems that 
account for competing objectives. Relatedly, a large and 
growing body of work has shown that one can often effi-
ciently elicit preferences for complex objectives, even in 
high-dimensional outcome spaces (Chu and Ghahra-
mani 2005, Fürnkranz and Hüllermeier 2010, Lin et al. 
2020).

One particularly challenging aspect of our setting is 
handling budget constraints (e.g., we may only be able 

to provide transportation assistance to a limited number 
of clients). Recent work has proposed methods for learn-
ing decision policies with fairness or safety constraints 
through reinforcement learning (Thomas et al. 2019) and 
contextual bandit algorithms (Metevier et al. 2019), 
given access to a batch of prior data. That work, how-
ever, neither addresses learning with budget constraints 
nor handles the exploration-exploitation trade-off 
required for online learning. A related study (Patil et al. 
2021) on online multiarmed bandits considered minimiz-
ing regret while ensuring that each arm is played a mini-
mal number of times but did not consider context-specific 
decision policies and fairness in resource allocations or 
budget constraints, as we do here. Budget constraints 
have been considered in a more general form of knapsack 
constraints in bandit settings. Slivkins (2019, chapter 10) 
provides a review of such work, focusing on the primary 
literature, which has considered the (noncontextual) mul-
tiarmed bandit setting. Earlier work on contextual multi-
armed bandits with knapsacks (Badanidiyuru et al. 2014, 
Agrawal et al. 2016a) provided regret bounds but lacked 
computationally efficient implementations. Agrawal et al. 
(2016b) later proved regret guarantees for linear contex-
tual bandit with knapsacks. Wu et al. (2015) provide a 
computationally tractable, approximate linear program-
ming method for online learning for contextual bandits 
with budget constraints. They do not consider multiobjec-
tive optimization, and their analysis and experiments do 
not address continuous or large state spaces, which make 
their work less applicable for equitable decision making 
in many settings of interest.

3. Selecting Policies in the Presence of 
Trade-Offs

We begin, in Section 3.1, by describing our motivating 
example of providing transportation to individuals with 
mandatory court dates. Using client data from the Santa 
Clara County Public Defender Office, we show that allo-
cating benefits to maximize appearance rates induces 
spending disparities across race groups. Then, in Section 
3.2, we continue by explicitly illustrating the inherent 
tension between maximizing appearance rates and 
equalizing spending—and arguing that popular axiom-
atic approaches to fairness can lead to unintended harm. 
Finally, in Section 3.3, we describe the results of a survey 
aimed at eliciting people’s willingness to trade court 
appearances for lower spending disparities.

3.1. Motivating Example
Consider the problem of allocating rideshare assistance 
to individuals who are required to attend mandatory 
court dates. The consequences of missing a court date 
can be severe. Often, after an individual misses a court 
appearance, judges will issue a “bench warrant,” which 
can lead to the individual’s arrest at their next contact 

Chohlas-Wood et al.: A Consequentialist Approach to Equitable Decision Making 
Management Science, Articles in Advance, pp. 1–18, © 2024 The Author(s) 3 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[6

7.
13

4.
20

4.
7]

 o
n 

18
 D

ec
em

be
r 2

02
4,

 a
t 1

0:
27

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



with law enforcement and possibly weeks or months of 
jail time (Fishbane et al. 2020, Chohlas-Wood et al. 
2023b). Despite these consequences, some individuals 
struggle to attend court because of significant transpor-
tation barriers (Mahoney et al. 2001, Brough et al. 2022, 
Allen 2024). Government agencies—including public 
defender offices—may therefore aim to improve appear-
ance rates by offering transportation assistance to and 
from court for a subset of these individuals with the 
greatest transportation needs. This type of intervention 
has promise for improving appearance rates by alleviat-
ing transportation burdens many clients face, as has 
been demonstrated in medical settings (Chaiyachati et al. 
2018, Lyft 2020, Vais et al. 2020, Fraade-Blanar et al. 
2021). As we discuss in Section 7, it is important to note 
that there are many alternative policy approaches to this 
issue, including discouraging judicial use of incarcera-
tion after an individual misses court.

A natural algorithmic approach for allocating rides is 
to prioritize those with the largest estimated treatment 
effect per dollar. In particular, suppose we have access 
to a rich set of covariates, Xi, for each individual i, such 
as their age, alleged offense, and history of appearance. 
Based on these covariates, we could then estimate each 
individual’s likelihood of appearance in the absence of 
assistance, Ŷi(0), and their likelihood of appearance if 
provided with a ride, Ŷi(1). These probabilities might, 
for example, be estimated using historical data on past 
outcomes, or a randomized experiment. Finally, we 
could sort individuals by ρi à [Ŷi(1)� Ŷi(0)]=ci, where 
ci is the cost of providing a ride to the i-th individual, and 
offer assistance to those with the highest values of ρi 
until the budget is exhausted.

This strategy aims to achieve the highest appearance 
rate given the available budget. However, in so doing, it 
implicitly prioritizes those who live closest to the 
courthouse—for whom rides are typically less expensive— 
which could lead to unintended consequences. For exam-
ple, consider the Santa Clara County Public Defender 
Office (SCCPDO) in California, which represents tens of 
thousands of indigent clients every year. Like many Ameri-
can jurisdictions, Santa Clara County, which includes San 
Jose, is geographically segregated by race (Figure 1(a)). In 
particular, Santa Clara’s Vietnamese population, one of the 
county’s largest ethnic minorities, does not tend to live as 
close to the courthouse as other racial or ethnic groups, 
including White individuals.

To understand the impacts of a strategy that optimizes 
exclusively for appearance, we start with a data set of 
65,193 court dates handled by SCCPDO between Janu-
ary 1, 2017, and December 18, 2023. For the sake of con-
sistency, this population of court dates consists solely of 
clients’ first court date after arraignment. For clients 
with court dates after January 1, 2021, we use the histori-
cal data from 2017–2020 to model Yi(0) with a logistic 
regression model based on age, race/ethnicity, offense 

severity (misdemeanor or felony), two-year appearance 
history, the day of the week and month of the court 
appearance, and the distance from the client’s home to 
the courthouse. For simplicity, we assume Yi(1) à 1, 
meaning that all individuals who receive a ride attend 
court. Finally, we assume rides cost $5 per mile in each 
direction, in line with current rideshare prices.

Under the naive optimization approach outlined 
above, Figure 1(b) shows per-capita spending for White 
and Vietnamese clients across different overall transpor-
tation budgets. For example, given an annual budget of 
$50,000, a policy that allocates rides to those with the 
highest estimated treatment effect per dollar would end 
up spending, on average, $6.86 for every White client, 
but only $4.54 on average per Vietnamese client. Policy-
makers and other stakeholders may deem this disparity 
to be undesirable and may thus be willing to accept 
lower overall appearance rates in return for more equal 
spending across groups.

3.2. Exploring Inherent Trade-Offs
To further explore the trade-off between appearance 
rates and spending parity, we now consider a synthetic 
client population with 5,000 Black and 5,000 White cli-
ents. For simplicity, we assume that each client has a 
75% chance of appearing at court in the absence of ride-
share assistance and is guaranteed to appear if provided 
a ride. Further, we set a fixed annual budget of $5 per 
person, or $50,000 total. Finally, we assume that Black 
clients live farther from court on average. Consequently, 
the average expected treatment effect per dollar is lower 
for Black clients than for White clients. This pattern 
induces a tension between maximizing total appear-
ances and equalizing spending across the two groups.1
We describe the data-generating process for this syn-
thetic population in detail in Online Appendix EC.3.

In Figure 2, we trace out the Pareto frontier for this 
example, which shows how the maximum possible 
number of appearances (on the vertical axis) varies 
under different allocations of rideshare assistance to 
Black clients (on the horizontal axis). Each point on 
the frontier corresponds to a threshold policy that pro-
vides assistance to clients with the largest treatment 
effects in each group, subject to demographic and bud-
get constraints.

Along the Pareto frontier, a policymaker ostensibly 
has more and less preferred outcomes. For example, 
imagine that a given policymaker’s utility is maximized 
at the blue point on the curve. In contrast, the point at the 
crest of the curve (in green) achieves the highest number 
of overall appearances but is a suboptimal policy be-
cause it underspends on Black clients, at least according 
to the stakeholder’s preferences. Similarly, a policy that 
achieves perfect spending parity (i.e., the purple point) 
also yields suboptimal outcomes relative to the policy-
maker’s preferences because too many appearances are 
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lost in order to achieve spending parity. We also plot the 
point on the curve corresponding to equal false-negative 
rates (FNR) between groups (in pink).2 A constraint that 
demands error-rate parity—as opposed to maximizing 
utility more directly—can again result in a suboptimal 
balance between maximizing appearances and evenly 
distributing transportation assistance relative to the 
underlying preferences of the policymaker. In contrast 
to the axiomatic approach common to past work, this 
simple example helps illustrate the value of viewing 
decisions from a consequentialist perspective.

3.3. Eliciting Preferences
We now empirically examine preferences for allocating 
transportation assistance in our hypothetical scenario 
above. To do so, we designed and administered a poll to 
a diverse sample of 297 Americans. We ran our survey 
on the Prolific platform, selecting the platform’s “U.S. 
representative sample” option to recruit respondents, 
where respondents’ self-identified sex, age, and ethnicity 
are comparable to a random population of U.S. adults, as 
determined by the U.S. Census. Survey respondents 
learned about our running example of providing clients 
with free rides to court and then read a short descrip-
tion of the hypothetical jurisdiction described above. 

(This prompt is included in full in Online Appendix 
EC.4). We then asked respondents to select their pre-
ferred trade-off among five possible options drawn from 

Figure 1. (Color online) Empirical Illustration of Potential Spending Disparities in Santa Clara County 
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(a) Santa Clara client locations. Each dot has been
randomly perturbed to preserve privacy.

(b) Average per-person spending for Vietnamese and
White clients in the absence of parity constraints.

Notes. The map in (a) shows the geographic distribution of the client base of the Santa Clara County Public Defender Office. The star on the map 
marks the location of the main county courthouse, where most clients are required to appear for court appointments. The plot in (b) explores the 
consequence of following a policy that provides rides to those with the highest estimated treatment effect per dollar without parity constraints. 
This policy would result in higher average per-person spending for White individuals than for Vietnamese individuals. The red point shows that 
a hypothetical annual ride budget of $50,000 would result in an average per-person spending amount of $6.86 for White individuals and an aver-
age per-person spending amount of $4.54 for Vietnamese individuals.

Figure 2. (Color online) The Pareto Frontier for a Stylized 
Population Model Showing the Trade-Off Between Appear-
ances and Spending per Black Client 
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Notes. The vertical axis shows expected additional appearances relative 
to a policy that does not provide rideshare assistance to any clients. 
Under this model, common heuristics (e.g., maximizing appearances 
and demanding demographic or error-rate parity) lead to suboptimal 
policies.
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the Pareto frontier in Figure 2. To aid in their decision, 
participants were shown the graphic depicted in Figure 
3(a). Participants were randomly shown either an 
ascending or descending version of this graphic to miti-
gate anchoring to the first options shown.

Our survey results are presented in Figure 3(b) and 
illustrate two key points. First, the vast majority of 
respondents prefer trading at least some “efficiency” 
(i.e., as measured by the total number of people who 
avoid jail because of receiving transportation assistance) 
in order to spend more money on Black clients. This 
broad preference for incorporating equity considera-
tions into algorithmic decision making mirrors past 
results (Koenecke et al. 2023). Second, there is substantial 

heterogeneity in preferences that elides traditional 
group boundaries. For example, there is considerable 
variation in preferences within self-identified Demo-
crats and Republicans; at the same time, the average 
preference is comparable across these two groups. We 
observe similar patterns across a number of other demo-
graphic characteristics of the respondents, including 
gender and race/ethnicity, as we show in Online 
Appendix EC.4. These results suggest that traditional 
axiomatic approaches to algorithmic fairness—which 
do not consider the specific context of decisions—risk 
yielding policies that do not reflect the preferences of 
stakeholders. In contrast, a more consequentialist per-
spective allows us to develop algorithms that better 

Figure 3. (Color online) Ride Allocation Preferences Among Survey Respondents 

(a) Graphic shown to survey participants.

(b) Survey results from 297 respondents, split by self-identified U.S. political party affiliation.
Mean preferred allocations are represented by the vertical dashed line.

Notes. The graphic in (a) was shown to survey participants to help them select their preferred ride allocation policy. In this hypothetical scenario, 
option B maximizes appearances, whereas option C corresponds to spending parity. The survey results in (b) show that both Democrats and 
Republicans prefer policies that spend roughly equal amounts on Black and White clients, but there is a wide range of preferences among mem-
bers of both groups.
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balance the difficult trade-offs inherent to many policy 
problems.

4. Computing Equitable Policies
For the rideshare example in the previous section, it is 
computationally straightforward to trace out the Pareto 
frontier: for any fixed budget allocated to each group, 
one can maximize appearances by offering rides to those 
clients with the largest (estimated) gain in appearance 
rate per dollar while constraining spending to the allot-
ted per-group budget. (We formally show the optimality 
of this strategy in Online Appendix EC.2). As a result, 
given preferences over various outcomes (e.g., trading 
off appearances with spending parity), one can effi-
ciently determine the utility-maximizing allocation 
strategy. However, in more complicated scenarios— 
with more complex preferences and potential actions— 
it is not immediately clear how to find optimal allocation 
strategies, even when preferences and treatment effects 
are fully known. Fortunately, for a large class of prefer-
ences, it is indeed feasible to efficiently compute utility- 
maximizing policies, as we now describe. In Section 6, 
we consider the problem of learning optimal polices 
when preferences are known but treatment effects are 
not.

To generalize from our running example, consider a 
sequential decision-making setting where, at each time 
step, one first observes a vector of covariates Xi drawn 
from a distribution DX supported on a finite state space 
X , and then must select one of K actions from the set 
A à {a1, : : : , aK}. For example, in our motivating applica-
tion, Xi might encode an individual’s demographics, his-
tory of appearance, alleged charges, and distance from 
court, and the set of actions might specify whether ride-
share assistance is offered (in which case, K à 2). In gen-
eral, we allow randomized decision policies π, where 
the action π(x) is (independently) drawn from a speci-
fied distribution on A.

In practice, there are often constraints on the distribu-
tion of actions taken. For example, budget limitations 
might mean that only a certain amount of money can be 
spent on average per client, with varying known costs 
per context and action c(x, ak). As such, given a cap b for 
average per-person expenditures, we require our deci-
sion policy π�to satisfy

EX[c(X,π(X))] à
X

x,k
Pr(X à x) · Pr(π(x) à ak) · c(x, ak)

 b:

In many common scenarios, we might imagine a set-
up where one “control” action a0 has no cost (i.e., 
c(x, a0) à 0), whereas all other available actions are costly 
(i.e., c(x, ak) > 0 for k > 0).

To arbitrate between feasible policies (i.e., those that 
adhere to the budget constraint), policymakers might 

consider both the direct outcomes of a policy (e.g., on 
appearance rates) and the relative allocation of benefits 
across demographic groups. To formalize this idea, we 
suppose each action is associated with a potential out-
come Yi(ak) and, in particular, taking action π(Xi) results 
in the (random) outcome Yi(π(Xi)). For example, Yi(1)
may indicate whether the i-th individual would attend 
one’s court date if offered rideshare assistance, and Yi(0)
may indicate the outcome if assistance was not 
provided.

Now, to facilitate computation, we assume a policy-
maker’s utility U(π) of any decision policy π�can be 
approximated by a flexible function of the following 
form:
U(π)àEX,Y[r(X,π(X),Y(π(X)))]

�
XL

#à1

X

g2G
λg,# |EX,Y[f#(X,π(X),Y(π(X))) |g 2 s(X)]

�EX,Y[f#(X,π(X),Y(π(X)))] | , (1) 

where r and f#�are fixed functions that parameterize this 
class of utilities, | · | is an absolute value, λg, #�are nonneg-
ative constant parameters, and s(Xi) ✓ G is a set of associ-
ated identities for each individual, where G is a finite set. 
In discussions of algorithmic fairness, special attention is 
often paid to these groups, which may consist of legally 
protected characteristics. For example, s(Xi) might spe-
cify both an individual’s race and gender.

The first term in U(π) captures the social value 
directly associated with each decision, and the second 
term penalizes differences in allocations and outcomes 
across groups. For example, in our motivating applica-
tion, we might set

r(x, a, y) à (a + c1y) · (1 + c2 · Ifrequent(x)), (2) 

where a 2 {0, 1} indicates whether rideshare assistance is 
provided, y 2 {0, 1} indicates whether a client appeared 
at their court date, Ifrequent(x) indicates whether an indi-
vidual is in frequent contact with law enforcement, and 
the positive constants c1 and c2 characterize the relative 
values of the terms. (In Equation (2), we do not multiply 
a by a constant because the overall scale of r is arbitrary.) 
This choice of r encodes the (hypothetical) policymaker’s 
belief that (1) appearing at one’s court date is better than 
not appearing; (2) receiving rideshare assistance is better 
than not receiving it, regardless of the outcome; and (3) 
the value of both assistance and appearance is greater 
for those who frequently encounter law enforcement 
(i.e., those for whom an open bench warrant is more 
likely to result in jail time because they are more likely to 
encounter law enforcement).

In addition to preferring transportation assistance pol-
icies that boost appearance rates, a policymaker might 
also prefer those for which we spend similar amounts 
per person across demographic groups to ensure such 
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investments are broadly applied across an agency’s juris-
diction. The second term of U(π) can be used to encode 
these parity preferences. For example, setting f (x, a, y) à
c(x, a) would encode a preference for spending parity. 
Depending on the application, one could imagine simi-
larly penalizing a given policy if the distribution of actions 
or successes were unequal across groups.

In practice, to encode preferences in this way, one 
might first show stakeholders anticipated outcomes of 
various hypothetical policies, akin to our survey above. 
We could then sweep over parameters to produce a 
utility function of the appropriate form that accurately 
captures the elicited preferences. Importantly, and in 
contrast with an axiomatic approach, our consequential-
ist paradigm is predicated on the belief that there are 
not universal, context-independent constraints on poli-
cies. Rather, the utility of a policy depends critically on 
how much one objective must be sacrificed to achieve 
another.

Given this setup, our goal is to find a policy π⇤ that 
maximizes utility while staying within budget. For-
mally, we seek to solve the following optimization 
problem:

π⇤ 2 arg max
π

U(π)
subject to : EX[c(X,π(X))]  b:

(3) 

We next discuss how to efficiently solve this optimiza-
tion problem.

4.1. Computing Optimal Decision Policies
To compute optimal policies, we assume in this section 
that one knows the distribution of X and the conditional 
distribution of the potential outcomes Y(ak) given X— 
that is, D(X) and D(Y(ak) |X). (In Section 6, we consider 
how to learn optimal policies when historical data on 
treatment effects are not known.) Given this informa-
tion, we show the optimization problem in Equation (3) 
can be expressed as a linear program, yielding an effi-
cient method for computing an optimal decision policy.

To construct the LP, first observe that any policy π�cor-
responds to a matrix v 2 RX

+ ⇥ RK
+, where vx, k denotes 

the probability x is assigned to action k. Thus, the com-
plete space of policies Π�can be written as

Π à v 2 RX
+ ⇥ RK

+

����� ∀x 2 X ,
XK

kà1
vx, k à 1

( )

, 

and we can accordingly view the components vx, k of v as 
decision variables in our LP. Now, in this representation, 
the budget constraint EX[c(X,π(X))]  b in Equation (3) 
can be expressed as a linear inequality on the decision 
variables:

X

x,k
Pr(X à x) · vx, k · c(x, ak)  b:

Finally, we need to express the utility U(x) in linear 
form. First, note that

U(π) à
X

x, k
EY[r(x, ak, Y(ak)) |X à x] · Pr(X à x) · vx, k

�
X

#

X

g
λg, #

�����
X

x, k

◆
I(g 2 s(x))Pr(X à x)

Pr(g 2 s(X))

· EY[f#(x, ak, Y(ak)) |X à x]
� Pr(X à x) · EY[f#(x, ak,

Y(ak)) |X à x]


vx, k

�����:

Because of the absolute value, the expression above is 
not linear in the decision variables. But we can use a 
standard construction to transform it into an expression 
that is. In general, suppose we aim to maximize an objec-
tive function of the form

αTv�
X

g, #
λg, # |βT

g, #v | , (4) 

where α�and β�are constant vectors. We can rewrite this 
optimization problem as a linear program that includes 
additional (slack) variables wg, #:

Maximize : αTv�
X

g,#
λg, #wg, #

Subject to : 0  wg, #,
�wg, #  βT

g, #v  wg, #:

(5) 

For completeness, we include a proof of this equivalence 
in Online Appendix EC.1.

Putting together the pieces above, we now write our 
policy optimization problem in Equation (3) as the fol-
lowing linear program:
Maximize :
X

x, k
EY[r(x, ak, Y(ak)) |X à x] · Pr(X à x) · vx, k

�
X

g, #
λg, #wg, #

Subject to :

vx, k, wg, # � 0 ∀x, k, g, #
X

k
vx, k à 1 ∀x,

X

x, k
Pr(X à x) · vx, k · c(x, ak)  b, and

� wg, # 
X

x, k

◆
I(g 2 s(x))Pr(X à x)

Pr(g 2 s(X))

· EY[f#(x, ak, Y(ak)) |X à x]

� Pr(X à x) · EY[f#(x, ak, Y(ak)) |X à x]


· vx, k  wg, # ∀g, #:
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Our approach above is a computationally efficient 
method for finding optimal decision policies. In theory, 
linear programming is (weakly) polynomial in the size 
of the input O( |X |K + |G |L) variables and constraints in 
our case. In practice, using open-source software run-
ning on conventional hardware, we find it takes approx-
imately one to two seconds to solve random instances of 
the problem on a state space of size |X | à 1,000 with 
|G | à 10 groups, K à 5 treatment arms, and L à 1 parity 
penalties.3

5. Sample Complexity Bounds on 
Learning Optimal Policies

To solve our policy optimization problem, we have thus 
far assumed perfect knowledge of the distribution of 
potential outcomes D(Y(ak) |X), which allows us to com-
pute the necessary inputs for our linear program. In real-
ity, however, this distribution must typically be learned 
from observed data. One common approach for estimat-
ing the impact of actions is to run an experiment in 
which actions are randomly allocated, potentially in a 
way to ensure that all actions are taken an equal number 
of times or to ensure each group of interest experiences 
all actions evenly. Note that such data collection strate-
gies do not adapt in response to observed outcomes of 
actions (such as some actions yielding higher appear-
ance rates partway through data collection). In Section 
5.1, we formally analyze these non–outcome-adaptive 
data collection strategies and provide an upper bound 
on the number of samples necessary to ensure we can 
compute a near-optimal allocation strategy for our 
desired objective. In Section 5.2, we discuss some consid-
erations relating to experimental cost. We present this 
initial analysis to highlight how in some cases, the 
amount of data needed may not differ substantially 
from simpler objectives that do not involve parity con-
straints. The other benefit of this first analysis is that it 
involves creating an experimental design for data collec-
tion in advance, which makes the resulting data easily 
suitable for standard statistical inference. However, in 
practice, there can be significant benefits to changing the 
data-gathering strategy over the course of an experi-
ment, as more effective actions can be prioritized faster. 
In Section 6, we demonstrate this through an alternative, 
contextual bandit–based data collection strategy that 
can often learn optimal policies more efficiently by judi-
ciously exploring the effects of actions. We demonstrate 
the advantages of this alternative strategy in an empiri-
cally grounded simulation study.

5.1. Sample Complexity Bounds
A natural concern for practitioners is whether balancing 
multiple complicated objectives—like the competing 
outcomes highlighted in our utility function in Equation 
(1)—requires obtaining substantially more data than in 

traditional, single-objective settings. Further, in most 
domains of practical interest, individuals are described 
by a set of features, and it is beneficial to know how 
choices about representing these individuals impact the 
amount of data required. To address these considera-
tions, we provide upper bounds on the samples needed 
to construct near-optimal policies with high probability, 
focusing on spending parity by setting f (x, a, y) à c(x, a)
(following our running example). Our aim in this analy-
sis is not to provide tight sample complexity bounds but, 
rather, to examine at a high level how additional parity 
objectives and modeling choices affect the amount of 
data required. Our results suggest that one may not 
need much more data to learn a multiobjective policy 
that incorporates equity preferences compared with a 
single-objective reward-maximizing policy, and that a 
known structure on the data-generating process can 
substantially reduce the amount of data required.

Our work is related to a deep literature in multiarmed 
bandits and contextual multiarmed bandits (see Latti-
more and Szepesvári (2020) for a fairly recent textbook 
overview). The majority of this research has focused on 
providing cumulative regret guarantees of online, adap-
tive algorithms for a wide range of settings, including 
seminal results for finite armed bandits (Auer et al. 2002) 
and linear contextual bandits (Abbasi-Yadkori et al. 
2011), as well as more recent interest in logistic models 
(e.g., Li et al. 2017, Jun et al. 2021). Approaches that mini-
mize cumulative regret bounds can be different from 
algorithms that provide sample complexity bounds that 
are probably approximately correct (PAC)—that is, 
methods that, after a sufficient amount of data, out-
put a decision policy that is near optimal with high 
probability.

Interestingly, prior work (e.g., Jin et al. 2018, section 
3.1) has provided an online-to-batch reduction that can 
be used to convert a contextual multiarmed bandit algo-
rithm with a cumulative regret result to a sample com-
plexity bound on the number of samples needed to 
extract a near-optimal policy with high probability. 
However, most contextual MAB algorithms with cumu-
lative regret guarantees rely on selecting actions under 
the principle of optimism under uncertainty with 
respect to the immediate estimated reward for the cur-
rent context. The resulting regret bound is defined with 
respect to the best action that could have been selected. 
In contrast, in our setting, the objective is to compute 
a policy π�that maximizes the utility function U(π), 
which includes both a reward maximization term and a 
spending parity term. In general, the optimal policy 
in our setting will not match an optimal policy that 
maximizes only the reward. This implies we cannot 
directly leverage an online-to-batch reduction from 
existing algorithms with cumulative regret bounds be-
cause the regret bounds provided by those algorithms 
will not provide regret bounds for our setting. To our 
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knowledge, none of the existing online contextual bandit 
algorithms consider additional parity objectives, or a 
joint policy across contexts, as in our work.

There is fairly limited work on MAB and contextual 
MAB algorithms that directly provide PAC guarantees. 
Mannor and Tsitsiklis’ (2004) foundational work pro-
vided sample complexity bounds for multiarmed ban-
dits with a finite set of arms, and we will build on their 
work for providing sample complexity bounds for our 
setting given a finite set of contexts and arms/actions, 
also known as the tabular setting. Concurrent with the 
development of this work, there has been some recent 
interest in sample complexity bounds for contextual 
bandits (e.g., Zanette et al. 2021, Li et al. 2022, Pacchiano 
et al. 2023), which we will discuss further under different 
assumptions of the underlying data-generating process.

We now introduce some additional assumptions. As in 
Sections 4 and 4.1, we further assume throughout this sec-
tion that the state space X is finite and that the costs and 
distribution of X are known. In practice, information on 
the distribution of X can often be estimated from historical 
data before any interventions are attempted. Let π⇤ be an 
optimal policy solution, as defined in Equation (3), with 
corresponding utility U(π⇤). We define the estimated util-
ity function Û(π) for a particular decision policy as

Û(π) à EX, Y[r̂(X,π(X), Y(π(X)))]
�
X

g2G
λg |EX[c(X,π(X)) |g 2 s(X)]

�EX[c(X,π(X))] | , (6) 

where r̂ is the estimated reward function learned from 
data. Let π̂�be a solution to the optimization problem in 
Equation (3), where we maximize Û(π) instead of U(π). 
Further, let r(x, k) à r(x, ak, YXàx(ak)) be the (random) 
reward if action ak is taken in the context x, where 
YXàx(ak) is the (random) potential outcome conditional 
on the given context. Note that the randomness in r(x, k) 
stems entirely from the randomness in the potential out-
comes YXàx(ak).

First, we present a simple lemma that allows us to 
bound the utility error by the reward estimation errors 
which we will use for the proofs of the theorems.

Lemma 1. The loss of utility because of using π̂ à
arg maxπÛ(π) is bounded by

U(π⇤)�U(π̂)  2
X

x
pxmaxk |rxk� r̂xk | :

Proof. Both π̂�and π⇤ by definition satisfy any pro-
vided constraints. Then,

U(π⇤)�U(π̂) à U(π⇤)� Û(π̂) + Û(π̂)�U(π̂)
 U(π⇤)� Û(π⇤) + Û(π̂)�U(π̂), (7) 

where the second equation follows because π̂ à
arg maxpiÛ(π), and so, Ûπ⇤  Ûπ̂.

Because the parity part of the utility function 
depends only on the policy, and not the rewards, it 
cancels out in Equation (7), leaving

U(π⇤)� Û(π⇤) + Û(π̂)�U(π̂)
à
X

x
px
X

k
π⇤xk(rxk � r̂xk) +

X

x
px
X

k
π̂xk(r̂xk � rxk)

 2
X

x
px max

k
|rxk � r̂xk | : Q.E.D. 

We now present upper bounds on the sample size 
needed to learn near-optimal policies. Specifically, for 
fixed ✏,δ > 0, we provide sample bounds that ensure the 
utility gap U(π⇤)�U(π̂) is small with high probability; 
that is, P(U(π⇤)�U(π̂) < ✏) > 1� δ. We prove these 
bounds under three different common distributional 
assumptions on the reward model, the tabular, linear, 
and logistic reward models: 

1. (Tabular rewards) We assume r(x, k)àd f (x, k) + η, 
where η ~ σ2 is sub-Gaussian, and η�is independent 
across draws of the reward function.

2. (Linear rewards) We assume there are (known) fea-
tures φ(x, ak) 2 Rd of the state and action and (unknown) 
parameters θ⇤ 2 Rd such that r(x, k)àdφ(x, ak)Tθ⇤ + η, 
where η ~ σ2 is sub-Gaussian, and η�is independent across 
draws of the reward function.

3. (Logistic rewards) We assume there are (known) fea-
tures φ(x, ak) 2 Rd of the state and action, and (unknown) 
parameters θ⇤ 2 Rd such that P(r(x, k) à 1) à logit�1(φ(x, 
ak)Tθ⇤), where the reward is independent across draws.

Full proofs for this section are in Online Appendix 
EC.5.

Theorem 1 (Tabular Rewards). Assume the reward is tab-
ular. Assume n samples are collected in a round-robin fash-
ion (i.e., for each context x, select the least-sampled action 
ak in that context, breaking ties arbitrarily). Further assume 
that the data are used per (x, a) pair to estimate a 
maximum-likelihood reward model r̂(x, a) that is used to 
define Û (see Equation (6)) and π̂ à arg max Û. Then, for 
✏ > 0, δ > 0, λg � 0, if

n � 16σ2 |X | |A |
✏2 ln 4 |X | |A |

δ
ln 2 |X |
δ

, 

then P(U(π⇤)�U(π̂) < ✏) > 1� δ.
Standard proofs for tabular multiarmed bandits rely 

on concentration inequalities on the estimated reward 
functions (Mannor and Tsitsiklis 2004). Unlike this 
work, we additionally need to estimate the reward per 
context to ensure the final estimated utility, which is a 
weighted sum over contexts, is nearly accurate. We 
show it suffices to estimate the reward outcome for a 
particular (x, a) pair to differing levels of accuracy, based 
on the probability of the context x, which allows our final 
bounds to be independent of the minimum context 
probability. This result is identical to finding a policy 
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such that 
P

xp(x)r(x,π(x)) is ✏-close to optimal. Note 
that this sample bound is identical whether we consider 
spending parity (i.e., regardless of whether λg > 0 for 
some g or λg à 0 for all g in Equation (1)). Intuitively, this 
is the case because the sample complexity is driven by 
uncertainty in estimating the rewards. The parity com-
ponent itself depends only on the allocation across sub-
groups, which can be computed exactly given any 
policy, independent of the estimated rewards.

Our sample bound in the tabular setting scales line-
arly with the product of the size of the context space and 
the action space, which suggests that prohibitively large 
sample sizes may be needed in practice. When the con-
texts are independent, this dependence is unavoidable, 
as a sample complexity lower bound shows at least 
|A |=✏2 samples are required for a single context (Man-
nor and Tsitsiklis 2004). Our next theorem proves signifi-
cantly fewer samples are sufficient if the reward function 
is a linear model.
Theorem 2 (Linear Rewards). Assume the reward is linear 
with feature representation φ(x, ak) 2 Rd. For any nonadap-
tive strategy π�used to collect samples, let

Σ(π) à E[φ(X,π(X))φ(X,π(X))T]
à
X

x,k
P(X à x) ·P(π(x) à ak) ·φ(x, ak)φ(x, ak)T 

be the expected induced covariance matrix. Also, define a 
problem-dependent constant

ρ0(π) à max
x,k

kΣ(π)�1=2φ(x, ak)k=
ÇÇÇ
d

p
:

There exists a static (it does not update as data are gathered) 
data collection strategy π̃�such that, for any ✏ > 0,δ > 0, 
λg � 0 and

n � max{6ρ0(π̃)
2dlog(3d=δ), O(σ2d2=✏2)}, 

with cost incurred c  nmaxxkc(x, ak), we have P(U(π⇤)�
U(π̂) < ✏) > 1� δ.

The quantity ρ0 in the above bound is known as 
“statistical leverage” (Hsu et al. 2014). If no prior infor-
mation is available, we know only that ρ0  kφk2=ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
λmin(Σ)

p
. In the worst case, ρ0 may scale with the condi-

tion number of the covariance matrix. However, in 
many practical settings, ρ0 is not large compared with 
1=✏2, and so, the upper bound scales like σ2d2=✏2. π̃�
refers to the data collection strategy in Theorem 2, and π̂�
refers to the performance of a learned decision policy 
that maximizes the utility given the gathered data.

The above result was motivated in part by, as we 
noted earlier, that, in general, we cannot directly lever-
age cumulative regret bounds for contextual bandits 
because the bounds relate empirical decisions to the 
optimal decision for the current context, with no further 
constraints or objectives. However, concurrent research 

by Zanette et al. (2021) on contextual linear bandits pro-
vides a sample complexity result sufficient to upper 
bound the expected reward error,

Z

x
px max

k
|φ(x, ak)T(θ⇤ � θ̂) | : (8) 

From our Lemma 1, we can use this to directly bound 
our expected utility. Therefore, we could also use their 
data collection strategy and bound and obtain a O

�
d2=✏2⇥

sample complexity result, which does not depend on 
ρ0(π). Their sample complexity results is minimax (in the 
dominant term, up to constants and log terms) optimal 
for linear contextual bandits (for both static data collection 
strategies that do not update based on the observed 
rewards and for adaptive ones that do update as rewards 
are observed). This implies that using their algorithm also 
yields a minimax (in the dominant term, up to constants 
and log terms) optimal sample complexity result for our 
setting because crucially, the parity objective depends 
only on the policy.

Given the practical importance of binary rewards, 
bounds for this setting would also be beneficial. How-
ever, whereas there has been some recent attention to 
logistic bandits (Li et al. 2017, Dong et al. 2019, Jun et al. 
2021), these papers have focused on cumulative regret 
guarantees. Jun et al. (2021) provide some PAC bounds 
on returning the optimal arm for logistic bandits. We are 
not aware of sample complexity results for contextual 
logistic bandits. In Online Appendix EC.5, we provide 
some preliminary bounds on the suboptimality of the 
performance of the resource allocation strategy derived 
from using estimated plug-in parameters for the logistic 
reward model (Theorem EC.4). Our results require 
strong assumptions and depend on problem-specific 
properties and the data collection strategy, suggesting 
there is significant room for similar results under more 
relaxed, and constructive, conditions. Contextual multi-
armed bandits are an active research area in the machine 
learning community, and it is likely our results can bene-
fit from future results on sample complexity algorithms 
and bounds for contextual bandits.

5.2. Cost-Aware Sample Complexity
Whereas we have provided sufficient sample bounds, it 
is also useful to consider bounds on the experimental 
cost that are sufficient to learn a near-optimal policy. 
Note that by this, we mean a bound on the cost required 
to learn a near-optimal policy, not the budget constraint 
on the learned decision policy. In general, the amount of 
resources available during the experimental period may 
be different than the resources available during sus-
tained deployment.

In the tabular case, we can prove that an experimental 
budget of O(Px, kc(x, ak)log(1=δ)=✏2) is sufficient (see 
Corollary EC.1 in the e-companion). When the domain 
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can be modeled with a linear or logistic reward model, 
we can simply multiply our sample bounds by the maxi-
mum cost maxxkc(x, ak) to get sufficient upper bounds on 
the experimental cost. In some settings, these bounds are 
likely order optimal in the dominant terms. For example, 
in the tabular case without parity preferences, when 
costs are homogeneous across contexts and actions and 
the context distribution is uniform, the expected experi-
mental cost must be at least c |X | |A | log(1=δ)=✏2 in the 
worst case (Theorem EC.5 in the e-companion).

However, in general, we expect that there are alter-
nate strategies with tighter bounds that are cost aware. 
As an illustration, consider a setting with two contexts, 
two actions, bounded rewards, no parity preferences 
(λg à 0), and a budget b (for the final learned decision 
policy) that is very large. As shown in Table 1, let costs 
be $1 for both actions in context 1, $0 for action 1 in con-
text 2, and $500 for action 2 in context 2. Using a round- 
robin data collection strategy to obtain an ✏-optimal 
policy, which we analyzed previously, will take both 
actions in both contexts an equal number of times. How-
ever, if the probability of context 2 is very small com-
pared with context 1, depending on the reward 
structure, it may be possible to learn a policy that yields 
a utility that is ✏-optimal by only learning the optimal 
action in context 1 and always taking action 1 in context 
2 (the zero cost action). Given the high cost of sampling 
action 2 in context 2, such an alternate data-gathering 
strategy might be preferable if it is important to optimize 
the cost incurred when learning the decision policy.

Generally, we expect that a cost-aware data-gathering 
strategy would depend on the interaction between con-
text probabilities, cost functions, and bounds on the 
potential outcome (reward) ranges. This is an interesting 
direction for future work, and the technical innovations 
required will likely further increase when we use para-
metric assumptions on the reward models and when 
budget or parity preferences (λg > 0) are in place.

6. Adaptively Learning Optimal Policies
The results from Section 5 suggest the feasibility of solv-
ing our desired optimization problem even when the 
distribution of potential outcomes must be estimated 
from data. However, learning from the type of nonadap-
tive strategies considered above is typically not the most 
efficient approach to learning from data. For instance, in 
our running example of providing rideshare assistance 
to public defender clients, if there turns out to be a group 

of clients with very small need and benefit from assis-
tance, a nonadaptive learning strategy will still allocate a 
proportional amount of limited resources to such indivi-
duals. In contrast, contextual bandit algorithms are often 
designed to maximize expected utility while learning, 
which typically involves estimating the potential perfor-
mance of each action ak and using that information to 
accrue benefits.4

Algorithm 1 (Policy Learning Procedure) 
1: input: Actions ak, budget b, parity preferences λg, #�

and f#, reward function r, covariate distribution 
P(X à x), group membership function s, bandit 
algorithm, ninit

2: initialize: Randomly treat first ninit people
3: for each subsequent individual i do
4: Set Di :à {(Xj, Aj, Yj)}i�1

jà1 , where Xj, Aj, and Yj 
denote the covariates, actions, and outcomes for 
previously seen individuals

5: Estimate Dk, x(Y(ak) |X à x) with a parametric 
family g(x, a;θ) fit on Di

6: if ε-greedy then
7: Estimate EY[r(x, a, Y(ak)) |X à x] and EY[f#(x, 

a, Y(ak)) |X à x] using g(x, a; θ̂i), where θ̂i is 
the MLE

8: else if Thompson sampling then
9: Estimate EY[r(x, a, Y(ak)) |X à x] and EY[f#(x, 

a, Y(ak)) |X à x] using g(x, a; θ̂
⇤
i ), where θ̂⇤i is 

drawn from the posterior of θ̂i
10: else if UCB then
11: Estimate EY[r(x, a, Y(ak)) |X à x] using the 

α-percentile of the posterior of g(x, a; θ̂i) and 
estimate EY[f#(x, a, Y(ak)) |X à x] using the 
(1� α)-percentile of the posterior of g(x, a; θ̂i)

12: end if
13: Compute nominal budgets b⇤i according to 

Equation (EC.42)
14: Find solution π⇤i of the LP in Section 4.1 with b⇤i 

and the input values estimated above
15: if ε� greedy & BERNOULLI(ε) àà 1 then
16: Take random action Ai according to Equa-

tion (EC.43)
17: else
18: Take action Ai ~ π⇤i (Xi)
19: end if
20: Observe outcome Yi
21: end for

To more efficiently learn decision policies in the real 
world, we now outline our procedure to integrate the LP 
formulation from Section 4 with three common contex-
tual bandit approaches: ε-greedy, Thompson sampling, 
and upper confidence bound (UCB), as described in 
Algorithm 1. For simplicity, we assume knowledge of 
the covariate distribution D(X), which is often easily 
obtained from historical data, even in the absence of past 
interventions. If historical data are not available, the 

Table 1. Setup for Hypothetical Cost-Aware Example

Costs

Probability Action 1 Action 2

Context 1 0.98 $1 $1
Context 2 0.02 $0 $500

Chohlas-Wood et al.: A Consequentialist Approach to Equitable Decision Making 
12 Management Science, Articles in Advance, pp. 1–18, © 2024 The Author(s) 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[6

7.
13

4.
20

4.
7]

 o
n 

18
 D

ec
em

be
r 2

02
4,

 a
t 1

0:
27

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



covariate distribution can instead be estimated from the 
sample of individuals observed during the decision- 
making process.

At a high level, at each step i, our ε-greedy approach 
first estimates D(Y(ak) |X) using the maximum-likelihood 
estimates of a chosen parametric family. We next use 
these estimates to find the optimal policy π⇤i with our LP. 
Then, with probability 1� ε, we treat the i-th individual 
according to π⇤i ; otherwise, with probability ε, we take 
action ak with a probability set to meet our budget require-
ments in expectation. Our Thompson sampling approach 
maintains a posterior over the parameters of a model of 
the potential outcomes D(Y(ak) |X), samples from this 
posterior; uses the posterior draw to construct the inputs 
for our LP, yielding a policy π⇤i ; and then treats the i-th 
individual according to π⇤i . Finally, under our UCB 
approach, we compute π⇤i by solving the LP with optimis-
tic estimates of r and the parity penalties (e.g., using the 
97.5th percentile of the posterior of the former and the 
2.5th percentile of the latter).

6.1. Simulation Study
To evaluate our learning approach above, we conducted 
a simulation study using data from a sample of clients 
served by the Santa Clara County Public Defender 
Office. In this example, clients can receive one of three 
mutually exclusive treatments ak: round-trip rideshare 
assistance, a transit voucher, or no transportation assis-
tance. We fix our budget to $5,000 and limit our popula-
tion to 1,000 clients, resulting in an average per-person 
budget of $5. In line with many government pilot pro-
grams, we assume that this funding is dedicated to 
learning suitable policies and that our hypothetical pub-
lic defender would be able to provision separate funding 
later to operate a more permanent program. We set the 
cost of rides to $5 per mile. We limit the client population 
to White and Vietnamese individuals to reflect our run-
ning example. The utility of a policy is described by 
Equation (1), where we set r(x, a, y) à y, f (x, a, y) à c(x, a), 
and λ à 0:0006. This choice yields an oracle policy that 
balances between maximizing appearances and achiev-
ing parity in per-capita spending across groups. The 
data-generating process for this population and addi-
tional experiment parameters are described in detail in 
Online Appendix EC.6.

We compare our contextual bandit approaches 
against several baselines. First, we compare with nona-
daptive random assignment (RA) in which treatment is 
randomly selected (in accordance with the budget) 
throughout the entire learning phase. The simplicity and 
versatility of RA make it a common strategy for learning 
optimal policies. We also include partially adaptive var-
iations on this approach, where we run RA on the first n 
individuals and then follow the optimal policy esti-
mated at individual n for the rest of the sample, similar 
to explore-first strategies. We compare all approaches 

against an oracle that can observe the true appearance 
probabilities.

We repeat this evaluation 2,000 times each on 1,000 
randomly selected individuals from our data set and 
compare the performance of all approaches using two 
different metrics. Our two main bandit approaches— 
Thompson sampling and UCB—significantly reduce 
regret when compared with nonadaptive and partially 
adaptive approaches during the learning phase (Figure 4). 
Our bandit approaches also learn policies that, if used for 
future populations, would outperform nonadaptive and 
partially adaptive approaches (Figure 5). In contrast to our 
two main bandit algorithms, the ε-greedy approach 
also manages to reduce regret but is slower to learn a 
near-oracle policy. RA and its variations illustrate the 
limits of the conventional randomized approach. For 
example, it is possible to learn a near-oracle policy using 
classic RA, but this incurs substantial regret during the 
learning phase. Though it is possible to reduce this 
regret by ending RA early, these alternatives learn 
poorer-performing policies.

By design, the bandit methods discussed above 
reduce spending disparities during the course of the 
simulation. We demonstrate this by comparing our 
main simulation to an alternate set of simulations 
where λg à 0 (Table 2). For example, with a choice of 
λg à 0:004, reflecting a mild preference for more equal 
spending, we observe that UCB methods spent $2.21 
less on Vietnamese clients than the $5 population 

Figure 4. (Color online) Mean Regret, Across 2,000 Simula-
tions, Incurred by Different Learning Approaches 

Notes. We define regret here as the difference between the observed 
utility and the utility obtained by an oracle during the same experi-
ment. Values are tightly estimated at each i, with the 95% confidence 
interval no more than 1.1 units off the estimate, so we omit uncer-
tainty bands for this figure. We note that the three bandit 
approaches—ε-greedy, Thompson sampling, and UCB—incur sub-
stantially less regret than random assignment (RA). It is possible to 
reduce the regret incurred from RA by stopping randomization early 
and following the optimal estimated policy from that point forward. 
However, these stop-early RA approaches produce worse policies 
than other approaches (Figure 5).
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average (i.e., the target budget). In contrast, with a choice 
of λg à 0 (i.e., preferring policies that simply aim to max-
imize appearances), UCB methods spent $3.36 less on 
Vietnamese clients compared with the population 
average.

The bandit approaches we discuss above aim to maxi-
mize utility during the learning phase but do not explic-
itly try to minimize money spent during learning. As 
discussed in Section 5.2, it is possible that alternate 
approaches may spend less while achieving similar 
outcomes. One could imagine a learning strategy in 
which nearly all participants were offered the no-cost 
treatment, with only a small number offered a costly 

treatment (a ride or transit voucher). With these alter-
nate approaches, we may be able to learn the structure of 
appearance behavior by using the no-cost treatment for 
most participants and then learn the impact of costly 
treatments with a small number of remaining partici-
pants. To explore such alternate approaches empirically, 
we considered a range of policies that assign the first 
1,000 clients in each experiment to one of our three treat-
ment arms in different random allocations. For example, 
one variation randomly allocated rides to only 2% of cli-
ents and transit vouchers to only 2% of clients, with the 
remaining 96% of clients receiving the no-cost control 
action. Another variation randomly allocated rides for 
10% of clients and vouchers for 40% of clients, with the 
remaining 50% of clients receiving the no-cost control 
action. Additional details describing this simulation are 
included at the end of Online Appendix EC.6.

We show the results of this exercise in Figure 6. This 
plot compares three dimensions on which we evaluate 
each policy: first, the utility achieved during the learning 
phase; second, the quality of the policy learned by the 
end of the phase; and third, the total amount spent dur-
ing learning. We see that varying spending mostly 
affects the utility observed during learning, with more 
expensive allocations resulting in higher utility during 
learning. Spending appears to have little impact on the 
quality of the final policy learned. For the sake of 

Figure 5. (Color online) Mean Performance, Across 2,000 
Simulations, of Optimal Policies Estimated with Data Avail-
able at Each Iteration i 

Notes. Performance is defined as the additional utility obtained by a 
policy over a baseline of no treatment for all individuals, with 100% 
indicating this quantity for the oracle policy. Uncertainty bands repre-
sent 95% intervals around the mean. UCB and Thompson sampling 
generate policies that are better than random assignment (RA) at any 
given iteration i. In contrast, the ε-greedy approach and the stop- 
early versions of RA generate policies that are slower to (or may 
never) reach near-oracle performance.

Table 2. Mean Spending Disparities by Method for 
Vietnamese Clients Across 2,000 Experiments, Including 
Both the Main Set of Simulations (Where λg à 0:004) and 
an Alternative Set of Simulations (with Identical 
Parameters to the Main Set, Except Where λg à 0)

Method

Vietnamese spending disparity

With penalty (λg à 0:004) No penalty (λg à 0)

UCB �$2.21 �$3.36
Thompson �$1.21 �$2.19
✏-Greedy �$1.29 �$2.38

Notes. Disparities are calculated by comparing average spending on 
Vietnamese individuals to the $5 average spending on all individuals 
(i.e., the target budget). Note that spending disparities are approximately 
$1 larger when λg à 0, verifying that the bandit methods we employ in 
our simulation learn to reduce spending disparities to maximize the 
policymaker’s utility.

Figure 6. (Color online) The Effect of Varying Spending on 
Outcomes of Interest 

Notes. Each circle represents average outcomes across 125 simula-
tions of random assignment (RA) with a given allocation. For the 
sake of comparison, we also included the average outcome across 
2,000 simulations of UCB from earlier in this section, represented 
here by a single triangle. Each glyph is sized and color coded by total 
spending, with color indicating if these approaches spent less (blue), 
equivalent (red), or more (green) money compared with the methods 
discussed earlier in this section. We find that varying spending 
mostly affects the utility observed during the learning phase but has 
little effect on the quality of the final policy learned. Random assign-
ment strategies that save money (when compared with UCB) do not 
achieve as much utility during the learning phase, though both 
approaches result in similar-quality policies.
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comparison, Figure 6 also includes UCB results from the 
simulations at the beginning of this section. Among the 
spending variations we tested, no variation spent less 
money than UCB while achieving similar utility during 
the learning phase. This suggests that UCB can be a cost- 
effective approach to maximizing utility while learning 
a high-quality policy.

7. Discussion
We have outlined a consequentialist framework for 
equitable algorithmic decision making. Our approach 
foregrounds the role of an expressive utility function 
that captures preferences for both individual- and 
group-level outcomes. In this conceptualization, we 
explicitly consider the inherent trade-offs between com-
peting objectives in many real-world problems. For 
instance, in our running example of allocating transpor-
tation assistance to public defender clients, there is ten-
sion between maximizing appearance rates and 
equalizing spending across groups. Popular rule-based 
approaches to algorithmic fairness—such as enforcing 
spending parity or equal false negative rates across 
groups—implicitly balance these competing objectives 
in ways that may be at odds with the actual preferences 
of stakeholders. Our approach, in contrast, requires one 
to confront the consequences of difficult trade-offs and, 
in the process, may help one improve those decisions.

For a rich class of utility functions, we showed that 
one can efficiently learn optimal decision policies by 
coupling ideas from the contextual bandit and optimiza-
tion literature. For example, with our UCB-based algo-
rithm, we do so by repeatedly solving a linear program 
under optimistic estimates of the potential outcomes of 
actions. In an empirically grounded simulation study, 
we showed that this strategy can outperform common 
alternatives, including learning through random assign-
ment or acting greedily based on the available 
information.

Our learning algorithm requires access to a well- 
specified utility function that reflects stakeholder prefer-
ences. In practice, inferring this utility is a complex task 
in its own right, but the illustrative survey that we con-
ducted shows how one can begin to operationalize this 
task. Challenges may arise from an unwillingness to 
explicitly state preferences for trade-offs involving sensi-
tive considerations like demographic parity. There are, 
however, several established techniques to elicit multi-
faceted preferences less directly. One family of 
approaches selects pairs of similar realistic scenarios, 
asks stakeholders to pick their preferred outcome, and 
infers their preferences from these choices (Chu and 
Ghahramani 2005, Fürnkranz and Hüllermeier 2010, 
Jung et al. 2019, Lin et al. 2020, Koenecke et al. 2023).

Another challenge—particularly relevant in the 
dynamic setting—is accounting for delayed outcomes. 

In our running example, we may choose to offer ride-
share assistance to a client days or weeks before their 
appointment date. As a result, there may be large gaps 
between when an action is taken and when we observe 
its outcome. Thompson sampling methods have been 
observed to be more robust to delayed outcomes than 
upper confidence bound strategies in contextual bandit 
scenarios (Chapelle and Li 2011). Another way to 
address this issue is through the use of proxies or surro-
gates, in which intermediate outcomes are used as a tem-
porary stand-in for the eventual outcome of interest 
(Athey et al. 2016). For example, with rideshare assis-
tance to clients, one might use intermediate responses 
(like a client’s confirmation to attend the appointment) 
as a proxy for appearance. A third approach might be to 
reduce the budget for costly actions, effectively limiting 
the resources spent while waiting to observe outcomes.

In addition to the above technical considerations, we 
note some practical limitations in providing transporta-
tion to public defender clients with upcoming court 
dates. First, in many circumstances, policymakers may 
not be legally permitted to explicitly use race, ethnicity, 
or other protected attributes when deciding how to allo-
cate limited resources. These policymakers may instead 
focus on other attributes, like geography or socioeco-
nomic status, which may be legally or socially more per-
missible. Second, our motivating example presupposes 
that resources are too limited to aid the entire population 
of interest. If policymakers had enough funding avail-
able to assist an entire population, it may not make sense 
to even consider equalizing per-capita spending across 
groups of interest, given that everyone would receive 
transportation assistance. Finally, though this study 
emphasizes the potential benefits of rideshare assistance 
for those who have mandatory court dates (e.g., one 
potential benefit is avoiding time in jail), a simpler and 
more effective policy for reducing jail time may be to dis-
courage judges from issuing bench warrants if clients 
fail to appear in court. Though in isolation, this policy 
might result in lower appearance rates, it could be 
accompanied by other assistance to offset this adverse 
outcome, including text message reminders, social ser-
vices, or rideshare assistance as we describe here (Fish-
bane et al. 2020, Chohlas-Wood et al. 2023b, Zottola et al. 
2023).

Algorithms impact individuals both through the deci-
sions they guide and the outcomes they engender. Look-
ing forward, we hope our work helps to elucidate the 
subtle interplay between actions and consequences and, 
in turn, furthers the design and deployment of equitable 
algorithms.
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Endnotes
1 Optimizing for parity across protected demographic groups, 
including race groups, is legally impermissible in some contexts in 
the United States, as we discuss more in Section 7.
2 In this case, equal FNR means that Pr(π à 0 |Y(0) à 0, Y(1) à 1, 
G à g) à Pr(π à 0 |Y(0) à 0, Y(1) à 1). That is, among those who would 
benefit from the assistance, an equal proportion do not receive it in 
both groups.
3 We used the GLOP linear optimization solver, as implemented in 
Google OR-Tools (https://developers.google.com/optimization/).
4 Nonadaptive strategies are particularly useful when testing statisti-
cal hypotheses post hoc, which is most easily done with data that are 
independently and identically distributed across treatments. We note 
that there is considerable interest in developing suitable inference 
methods for this latter goal using data gathered with adaptive multi-
armed bandit strategies (e.g., Hadad et al. 2021, Zhang et al. 2021).
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