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ABSTRACT
In studies of discrimination, researchers often seek to estimate a causal e!ect of race or gender on
outcomes. For example, in the criminal justice context, one might ask whether arrested individuals would
have been subsequently charged or convicted had they been a di!erent race. It has long been known
that such counterfactual questions face measurement challenges related to omitted-variable bias, and
conceptual challenges related to the de"nition of causal estimands for largely immutable characteristics.
Another concern, which has been the subject of recent debates, is post-treatment bias: many studies of
discrimination condition on apparently intermediate outcomes, like being arrested, that themselves may
be the product of discrimination, potentially corrupting statistical estimates. There is, however, reason
to be optimistic. By carefully de"ning the estimand—and by considering the precise timing of events—
we show that a primary causal quantity of interest in discrimination studies can be estimated under an
ignorability condition that may hold approximately in some observational settings. We illustrate these ideas
by analyzing both simulated data and the charging decisions of a prosecutor’s o#ce in a large county in the
United States.
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To assess the role of race or gender in decision making,
researchers o!en examine disparities between groups a!er
adjusting for relevant factors. For example, to measure racial
discrimination in lending decisions, one might estimate race-
speci"c approval rates a!er adjusting for creditworthiness, typ-
ically via a regression model. This simple statistical strategy—
sometimes called benchmark analysis—has been used to study
discrimination in a wide variety of domains, including bank-
ing (Munnell et al. 1996), employment (Berg and Lien 2002),
education (Baum and Goodstein 2005), healthcare (Balsa,
McGuire, and Meredith 2005), housing (Edelman and Luca
2014; Greenberg, Gershenson, and Desmond 2016), and
criminal justice (Ayres 2002; Gelman, Fagan, and Kiss 2007;
Rehavi and Starr 2014; Fryer Jr 2019; MacDonald and Raphael
2021).

The results of benchmark analyses are o!en framed in causal
terms (e.g., as an e#ect of race on outcomes), but it is well
understood that such an approach su#ers from at least three
signi"cant statistical challenges when used to estimate causal
quantities. First, at a conceptual level, it is unclear how best to
rigorously de"ne causal estimands of interest when the treat-
ment is race, gender, or another largely immutable trait. Second,
estimates can be plagued by omitted-variable bias if one does
not appropriately adjust for all relevant covariates. Third—and
the focus of our article—there are worries that estimates are cor-
rupted by post-treatment bias when one adjusts for covariates
or restricts to samples of individuals determined downstream
from race, gender, or another such treatment variable. This
concern, in particular, has raised doubts about the reliability of
the literature on police discrimination, where many studies rely
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on administrative stop records, and hence, implicitly condition
on o$cers stopping an individual, an action that itself is likely
discriminatory (Knox, Lowe, and Mummolo 2020; Heckman
and Durlauf 2020).

Here we present a causal framework for conceptualizing
and estimating a measure of discrimination that is suitable
for many applied problems. Our framing speci"cally addresses
concerns about post-treatment bias. To do so, we "rst de"ne
a causal quantity—the second-stage sample average treatment
e#ect, or sateM—which closely maps to the legal notion of
disparate treatment. For this estimand, by carefully consider-
ing the timing of events, we show that treatment assignment
conceptually occurs a!er selection into the sample of interest.
We then introduce the notion of subset ignorability, show that
this condition formally justi"es the use of benchmark analysis
to estimate the sateM , and discuss settings in which it is likely
to hold approximately. We illustrate these ideas by analyzing
synthetic data, as well as a detailed dataset of prosecutorial
charging decisions for approximately 20,000 felony arrests in a
major U.S. county. By developing this statistical foundation, we
hope to place discrimination studies on more solid theoretical
footing.

1. A Motivating Example

Consider the problem of measuring racial discrimination in
prosecutorial charging decisions. A!er an individual has been
arrested, prosecutors in the district attorney’s o$ce read the
arresting o$cer’s incident report and then decide whether or not
to press charges. For simplicity, suppose prosecutors only have
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access to the incident report—and to no other information—
when making their decisions. We allow for the possibility that
the arrest decision that preceded the charging decision may
have su#ered from racial discrimination in complex ways that
cannot be inferred from the incident reports themselves. Finally,
suppose that a researcher has access to these incident reports for
arrested individuals, but, importantly, not to any data on indi-
viduals that o$cers considered but ultimately decided against
arresting. What, if anything, might one hope to discover about
racial discrimination in charging decisions in light of the fact
that the people about whom the prosecutor makes charging
decisions have been selected—that is, arrested—not randomly,
but rather in ways that likely depended on their race?

The "rst challenge is to rigorously de"ne causal estimands
of interest. The inherent di$culty is captured by the statistical
refrain “no causation without manipulation” (Holland 1986),
since it is o!en unclear what it means to alter attributes like
race and gender (Sekhon 2008). One common maneuver is to
instead consider the causal e#ect of perceived attributes (e.g.,
perceived race or perceived gender), which ostensibly can be
manipulated—for example, by changing the name listed on an
employment application (Bertrand and Mullainathan 2004), or
by masking an individual’s appearance (Goldin and Rouse 2000;
Grogger and Ridgeway 2006; Pierson et al. 2020). In our case,
one might imagine a hypothetical experiment in which explicit
mentions of race in the incident report are altered (e.g., replacing
“white” with “Black”). The causal e#ect is then, by de"nition,
the di#erence in charging rates between those cases in which
arrested individuals were randomly described (and hence, may
be perceived) as “Black” and those in which they were randomly
described as “white.” This conceptualization of discrimination
conforms to one common causal understanding of discrimi-
nation used, for example, in audit studies. This framing also
maps closely to the legal notion of disparate treatment, a form
of discrimination in which actions are motivated by animus or
otherwise discriminatory intent (Goel et al. 2017).

While researchers have carried out such audit studies—
including in the case of prosecutorial charging decisions
(Robertson, Baughman, and Wright 2019; Chohlas-Wood
et al. 2021)1—it is o!en infeasible to study important policy
questions through randomized experiments. In the absence of
a controlled experiment, one can in theory identify this type of
causal estimand from purely observational data by comparing
charging rates across pairs of cases that are identical in all
aspects other than the stated race of the arrested individual.2
That strategy, which mimics the key features of the hypothetical
randomized experiment described above, is formally justi"ed
when treatment assignment (i.e., description of race on the

1There are some di!erences between the idealized audit study described
above and these two experiments. Chohlas-Wood et al. conduct a quasi-
random "eld trial in which they mask—but do not switch—the stated race
of individuals in police narratives used to make actual charging decisions.
Robertson, Baughman, and Wright survey prosecutors in a randomized
lab experiment and ask them, hypothetically, what their charging decision
would be based on fact patterns in which the race of the suspect is manip-
ulated. Although neither of these studies maps exactly to the hypothetical
experiment motivating our estimand, both demonstrate the feasibility of
conducting such an experiment.

2It su#ces to compare groups of cases that have the same distribution of
potential outcomes—even if the cases themselves are not identical—a
property we formalize in De"nition 2 below.

incident report, and subsequent perception by the prosecutor)
is ignorable given the observed covariates (i.e., features of
the incident report) (Imbens and Rubin 2015). In practice,
though, this approach may su#er from omitted-variable bias
when the full incident report is not available to researchers,
and may su#er from lack of overlap when suitable matches
cannot be found for each case—limitations common to many
observational studies of causal e#ects. To address these issues,
one can restrict attention to the overlap region and gauge
the robustness of estimates to varying forms and degrees of
unmeasured confounding (Corn"eld et al. 1959; Rosenbaum
and Rubin 1983b; Cinelli and Hazlett 2020), an approach we
demonstrate below.

Finally, there is the issue of post-treatment bias, especially
due to sample selection. Knox, Lowe, and Mummolo (2020)
argue that researchers o!en inadvertently introduce post-
treatment bias in observational studies of discrimination by
subsetting on apparently intermediate outcomes—such as, in
our charging example, being arrested—that themselves may be
the product of discrimination. As a result, the authors caution
that causal quantities of interest cannot be identi"ed by the
data in the absence of implausible assumptions, such as lack
of discrimination in the initial arrest decision. In making their
argument, Knox, Lowe, and Mummolo focus on the use of force
by police o$cers in civilian encounters, but they suggest their
formal critique applies more broadly, casting doubt on a wide
range of observational studies of discrimination.

Here we show that such customary subsetting does not pose
an insurmountable threat to discrimination research. To under-
stand why, one must precisely de"ne the causal estimand, and
carefully consider the timing of events. For instance, in our
charging example, there are two relevant treatments, the o$cer’s
perception of race, a#ecting the o$cer’s arrest decision, and the
prosecutor’s perception of race, a#ecting the prosecutor’s charg-
ing decision. The arrest decision is post-treatment relative to the
o$cer’s perception of race but, importantly, it is pre-treatment
relative to the prosecutor’s perception of race. Similarly, the
features of the incident report—which we must adjust for in
this type of benchmark analysis—are post-treatment relative to
the o$cer’s perception of race but pre-treatment relative to the
prosecutor’s perception of race. In such a two-decider situation,
as Greiner and Rubin (2011) suggest, it is possible to recover
estimates of discrimination by the second decider (e.g., in the
charging decision) even if there is discrimination by the "rst
decider (e.g., in the arrest decision).

2. A Measure of Discrimination

We present a simple two-stage model to characterize discrim-
inatory decision making in a variety of real-world situations
and de"ne our main causal quantity of interest—the second-
stage sample average treatment e#ect, or sateM—within this
general framework. In the context of our motivating example,
the sateM corresponds to the quantity that would be mea-
sured in the hypothetical audit study of prosecutorial deci-
sions described in Section 1. A central aim of this article is to
formalize technical assumptions that allow one to statistically
identify discrimination—more precisely, disparate treatment—
in the second stage (e.g., in prosecutorial charging decisions)
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when data are only available for individuals who made it past the
"rst stage (e.g., those who were arrested). Importantly, our for-
malization accommodates scenarios in which "rst-stage deci-
sions may themselves be discriminatory.

In the "rst stage, we assume each individual in some pop-
ulation is subject to a binary decision M, such as an o#er of
employment, admission to college, or law enforcement action.
Those who receive a “positive” "rst-stage decision (e.g., those
who are arrested) proceed to a second stage, where another
binary decision Y is made. In our running example, the case
of each arrested individual is reviewed in the second stage by a
prosecutor who may or may not choose to press charges. Those
who are not arrested do not have a case that requires review by a
prosecutor and, indeed, there may be no administrative record
of those individuals.

When considering racial discrimination in decisions involv-
ing Black and white individuals, our primary quantity of interest
is the second-stage sample average treatment e#ect, E[Y(b) −
Y(w)], where Y(z) indicates the potential second-stage deci-
sion and the expectation is taken over individuals reaching the
second stage. Here, we imagine that the perception of race is
counterfactually determined a!er the "rst-stage decision but
before the second-stage decision (e.g., a!er arrest but before
charging, perhaps by altering the description of race on the
incident report viewed by a prosecutor). The second-stage sam-
ple average treatment e#ect thus, captures discrimination in
the second-stage decision among those who made it past the
"rst stage (e.g., discrimination in charging decisions among
those who were arrested). This estimand maps onto a common
understanding of disparate treatment in second-stage decisions,
including in our charging example.

2.1. A Formal Model of Discrimination

We now formalize the above discussion to explicitly include
decisions made at both the "rst and second stages. For ease of
interpretation, we follow Greiner and Rubin (2011) and moti-
vate our statistical model by considering settings where there
are two deciders (e.g., an o$cer and a prosecutor) whose percep-
tions of race—or gender, or another trait—can in theory be inde-
pendently altered prior to their decisions. There are, however,
examples in which one can plausibly intervene twice even when
a single decider makes both decisions. For instance, an o$cer
may decide to stop a motorist based in part on a brief impression
of the motorist’s skin tone as they drive past (Grogger and
Ridgeway 2006; Pierson et al. 2020). This visual impression of
race could subsequently be altered if the motorist presents a
driver’s license bearing a name characteristic of another race
group, or speaks a dialect of English at odds with the o$cer’s
expectation. It thus may be possible to apply our framework
whether one imagines there are two deciders or a single one.

We begin by denoting the race of an individual as perceived
by the "rst decider at the "rst stage by D ∈ {w, b}, where, for
simplicity, we consider a population consisting of only white
and Black individuals. We focus on racial discrimination for
concreteness, but similar considerations apply to discrimination
based on other attributes, such as gender. Assuming that there
is no interference between units (Imbens and Rubin 2015), we
let the binary variables M(w) and M(b) denote the potential

"rst-stage decisions for an individual (e.g., whether they were
arrested), and write M = M(D) for the observed "rst-stage
decision. To avoid triviality, we assume throughout that Pr(M =
1) > 0.

Next, we let Z ∈ {w, b} denote the race of an individual
as perceived by the second decider, at the second stage. In our
running example, Z denotes race as perceived by the prosecutor
reviewing that person’s "le, while D denotes race as perceived
by the police o$cer during the encounter. Finally, we de"ne
the second-stage potential outcomes as a function of both the
"rst-stage outcome M (e.g., the arrest decision) and the second
decider’s perception of race Z. Thus, assuming once again that
there is no interference, the observed second-stage outcome for
an individual can be denoted Y = Y(Z, M), where we con-
sider four potential second-stage outcomes for each individual:
Y(z, m), where z ∈ {w, b} and m ∈ {0, 1}. In our example,
only those who were arrested can be charged, and so Y(b, 0) =
Y(w, 0) = 0 for all individuals.3

We further allow each individual to have an associated vec-
tor of (non-race) covariates X, representing, for example, their
behavior during a police encounter, their recorded criminal
history, or both. We imagine these covariates are "xed prior
to the second-stage treatment (e.g., prior to the prosecutor’s
perception of race), since otherwise the key ignorability assump-
tion in De"nition 2 below is unlikely to hold. In practice, X is
only observed for a subset of the population (e.g., those who
were arrested and hence, in the dataset), but we nonetheless
de"ne the covariate vector for all individuals in our population
of interest. These covariates are not necessary to de"ne our
causal estimands of interest, but they play an important role in
constructing our statistical estimators.

In this model of discrimination, we have taken care to distin-
guish between the (realized) "rst- and second-stage perceptions
of race, D and Z, because this helps to clarify the timing of events
and the meaning of causal quantities. Importantly, this makes it
clear that we can conceive of D and Z as separately manipulable.
At the same time, our focus is observational settings, in which
disagreement between Z and D may be realized only rarely, if at
all, in the data we observe. For instance, barring manipulation
of the incident report, it seems unlikely that an arresting o$cer’s
perception of race will frequently di#er from a prosecutor’s per-
ception. Our simulation in Section 3 thus imposes the further
constraint that perceived race is the same at each stage, though
this restriction is not necessary in general.

With this framing, we now formally describe the primary
causal estimand we consider. This quantity, which we call the
second-stage sample average treatment e#ect (sateM) re)ects
discrimination in the second stage of the decision-making pro-
cess outlined above, such as discrimination in the prosecutor’s
charging decision.4

3To avoid imagining values of Z for individuals not arrested, one could also
make them “missing” by setting Z = Z(D, M), Z(d, 0) = NA, Z(d, 1) = d,
Y(NA, 1) = NA, and Y(z, 0) = 0 for z ∈ {w, b, NA}, as we do in the simulation
in Section 3. This does not a!ect any of the mathematical details in what
follows.

4The SATEM is notationally equivalent to the CDEM=1 de"ned in Knox, Lowe,
and Mummolo (2020). In our case, however, we have taken care to specify
that the "rst parameter in the quantity Y(z, m) denotes intervening on the
second-stage perception of race. Moreover, the SATEM is distinct from what
Knox, Lowe, and Mummolo call the ATEM=1.
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De!nition 1 (sateM). The second-stage sample average treat-
ment e"ect, denoted sateM , is:

sateM = E[Y(b, 1) − Y(w, 1) | M = 1]. (1)

The estimand in Equation (1) compares the potential second-
stage decisions under two race perception scenarios. For exam-
ple, it compares the potential charging decisions when the pros-
ecutor perceives the individual to be either Black or White;
importantly, though, the estimand does not explicitly consider
the arresting o$cer’s perception of race. Moreover, this esti-
mand restricts to the subset of individuals who had a “positive”
"rst-stage decision (e.g., those who were in reality arrested).

Because we condition on M = 1 in the de"nition of the
sateM , we may equivalently write Equation (1) as

sateM = E[Y(b, M) − Y(w, M) | M = 1]. (2)

We can further write

sateM = E[Y(b) − Y(w) | M = 1], (3)

where we de"ne Y(z) = Y(z, M). Among those who reach the
second stage (i.e., individuals with M = 1), Y(z) = Y(z, 1)

denotes the outcome of intervening only on the second decider’s
perception of race. Among those who do not reach the second
stage (i.e., individuals with M = 0), Y(z) = Y(z, 0) = 0.
Equations (1), (2), and (3), as well as the informal estimand
introduced at the beginning of Section 2, are equivalent ways
of capturing the same underlying quantity, varying only in the
degree to which they are explicit about the staged nature of the
process.

2.2. Estimating the SATEM

Having de"ned the sateM , our goal is now to estimate it using
only second-stage data. That is, we aim to estimate the sateM
only using observations for those individuals who received a
“positive”—and potentially discriminatory—decision in the "rst
stage. For example, we seek to estimate discrimination in charg-
ing decisions based only on data describing those who were
arrested. As we show now, an ignorability assumption, together
with an overlap condition, is su$cient to guarantee the sateM
is nonparametrically identi"ed by data on the second-stage
decisions.

De!nition 2 (Subset ignorability). We say that Y(z, 1), Z, M, and
X satisfy subset ignorability if

Y(z, 1) ⊥⊥ Z | X, M = 1 (4)

for z ∈ {w, b}.

In our recurring example, subset ignorability means that
among arrested individuals, a!er conditioning on available
covariates, race (as perceived by the prosecutor) is independent
of the potential outcomes for the charging decision. As above,
we can equivalently write Equation (4) as

Y(z) ⊥⊥ Z | X, M = 1. (5)

This latter expression makes clear that subset ignorability is
closely related to the traditional ignorability assumption in

causal inference, but where we have explicitly referenced the
"rst-stage outcomes to accommodate a staged model of decision
making.

In our prosecutorial setting, subset ignorability would fail if,
for example, there were a factor that prosecutors used to make
their charging decisions but which was not accounted for in
the analysis (e.g., if prosecutors reviewed witness statements
that were not in the case "les provided to the analyst), and,
further, that factor were unbalanced between groups (e.g., if all
else equal, witness statements were more commonly available in
the cases of white individuals). See Sections 3 and 4 for further
discussion of such unobserved confounders and their statistical
consequences.

Almost all causal analyses implicitly rely on a version of sub-
set ignorability, since researchers rarely make inferences about
the full population of interest. For example, analyses are typ-
ically limited to the individuals who agreed to participate in
the study. Even randomized experiments, while ideal for inter-
nal validity, frequently lack external validity because the study
participants do not resemble a larger population of interest.
Whenever ascribing causal interpretations to nonexperimental
data, it is important to carefully consider the plausability of
ignorability and other assumptions, as we discuss in detail in
Sections 3 and 4. We note, though, that the assumptions we rely
on are similar to those invoked in nearly every observational
study of causal e#ects.

Ignorability assumptions typically require a corresponding
overlap condition to guarantee consistent estimation.5

De!nition 3 (Overlap). We say that overlap holds when Pr(Z =
z | X = x, M = 1) > 0 for all z and x such that Pr(X = x, M =
1) > 0.

Overlap states that there are no covariate levels for which
the probability of receiving one of the treatments is zero within
the population of interest. In our prosecution example, overlap
ensures that every case has a “twin,” identical in all aspects
other than the stated race of the arrested individual, against
which it can be compared. Overlap would fail, therefore, in the
prosecutorial setting, if, for instance, there were alleged o#enses
for which only Black individuals were arrested. We note that,
unlike ignorability, overlap can be assessed directly from the
data; see Section 4. In cases where overlap fails to hold, one can
still elicit valid causal estimates by restricting to the subset of
the population where overlap holds. For example, in assessing
discrimination in prosecutorial charging decisions, one might
only consider those alleged o#enses for which both Black and
white individuals have a nonzero probability of being arrested.
But this restriction comes at the cost of inferential validity for the
original population. In such cases, one is estimating the causal
e#ect only for the restricted population; the causal e#ect for the
original population may di#er, sometimes substantially.

In the traditional, single-stage setting, ignorability and over-
lap are su$cient to obtain consistent estimates of the average
treatment e#ect. Likewise, we now show that in our two-stage
model of discrimination, subset ignorability and overlap are suf-

5In the following, we assume that X is discrete for simplicity of exposition; for
continuous analogues of these results, see Appendix C.
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"cient to guarantee consistent estimates of the sateM . In prac-
tice, if one can adjust for (nearly) all relevant factors a#ecting
second-stage decisions, one can (approximately) satisfy subset
ignorability, and in particular, one can estimate the sateM only
using data available at the second stage. In the Appendix, we
compare subset ignorability to several alternatives, and show
that those variants tend either to be too weak to guarantee
identi"ability, or unnecessarily demanding for real-world appli-
cations. We emphasize that since the "rst-stage decision, M, and
the covariates, X, can be viewed as pre-treatment relative to the
second-stage intervention, concerns about post-treatment bias
corrupting estimates of the sateM are more naturally thought
of as familiar concerns about omitted-variable bias.6

Theorem 1. Suppose Y(z, 1), Z, M, and X satisfy subset ignora-
bility and overlap. Then, the sateM equals

∑

x
E[Y | Z = b, X = x, M = 1] · Pr(X = x | M = 1)

−
∑

x
E[Y | Z = w, X = x, M = 1] · Pr(X = x | M = 1).

Proof. Conditioning on X in Equation (1), we have

sateM =
∑

x
E[Y(b, 1) | X = x, M = 1]

· Pr(X = x | M = 1)

−
∑

x
E[Y(w, 1) | X = x, M = 1]

· Pr(X = x | M = 1).

(6)

By subset ignorability and overlap, we can condition the sum-
mands in Equation (6) on Z = b and Z = w, respectively,
without changing their values, yielding

sateM =
∑

x
E[Y(b, 1) | Z = b, X = x, M = 1]

· Pr(X = x | M = 1)

−
∑

x
E[Y(w, 1) | Z = w, X = x, M = 1]

· Pr(X = x | M = 1)

(7)

=
∑

x
E[Y(Z, M) | Z = b, X = x, M = 1]

· Pr(X = x | M = 1)

−
∑

x
E[Y(Z, M) | Z = w, X = x, M = 1]

· Pr(X = x | M = 1).

(8)

Finally, the statement of the proposition follows by consistency,
as Y = Y(Z, M).

Corollary 1. Suppose subset ignorability and overlap hold, and
that we have n iid observations (Xi, Zi, Yi)n

i=1 with Mi = 1. Let
S(n)

x = {1 ≤ i ≤ n : Xi = x} represent the set of observations
with X = x, and let S(n)

zx = {1 ≤ i ≤ n : Zi = z ∧ Xi = x}

6See Heckman (1979) for related discussion on interpreting sample selection
bias as omitted-variable bias.

represent the set of observations with X = x and Z = z. Then
the strati"ed di#erence-in-means estimator,

!n =
∑

x




1

∣∣S(n)
bx

∣∣
∑

i∈S(n)
bx

Yi





∣∣S(n)
x

∣∣

n

−
∑

x




1

∣∣S(n)
wx

∣∣
∑

i∈S(n)
wx

Yi





∣∣S(n)
x

∣∣

n , (9)

yields a consistent estimate of the sateM .

Proof. Note that by the strong law of large numbers,

lim
n→∞

1
∣∣S(n)

zx
∣∣

∑

i∈S(n)
zx

Yi
a.s.= E[Y | Z = z, X = x, M = 1], and

lim
n→∞

∣∣S(n)
x

∣∣

n
a.s.= Pr(X = x | M = 1).

Consequently, limn→∞ !n equals, a.s.,

∑

x
E[Y | Z = b, X = x, M = 1] · Pr(X = x | M = 1)

−
∑

x
E[Y | Z = w, X = x, M = 1] · Pr(X = x | M = 1),

which is the sateM , by Theorem 1.

A straightforward calculation further shows that the follow-
ing expression yields a consistent estimate of the standard error
of !n:

ŝe(!n) =

√√√√∑

x

(∣∣S(n)
x

∣∣

n

)2 [
cbx(1 − cbx)∣∣S(n)

bx
∣∣

+ cwx(1 − cwx)∣∣S(n)
wx

∣∣

]

,

(10)
where

czx = 1
∣∣S(n)

zx
∣∣

∑

i∈S(n)
zx

Yi.

Equation (10) accordingly allows us to form con"dence intervals
for !n.

The nonparametric strati"ed di#erence-in-means estima-
tor !n is the basis for nearly all applications of benchmark
analysis in discrimination studies. In practice, as we discuss
further in Section 3, it is common to approximate !n via a
parametric regression model—but the two estimators share the
same theoretical underpinnings. As such, our analysis above
simply grounds traditional benchmark analysis within a speci"c
causal framework, and demonstrates that a particular ignorabil-
ity assumption, together with overlap, is su$cient to yield valid
estimates.
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2.3. An Alternative Measure of Discrimination

To better understand the sateM , we now contrast it with the
total e#ect (te) (Imai, Keele, and Tingley 2010a), a second esti-
mand considered by discrimination researchers (Knox, Lowe,
and Mummolo 2020; Heckman and Durlauf 2020; Zhao et al.
2021). The total e#ect and the sateM di#er in our setting in two
ways: (a) the population of individuals about which we make
inferences; and (b) the potential outcomes being contrasted. The
total e#ect is not restricted to individuals who had a “positive”
"rst-stage decision (e.g., it is not restricted to those who were
arrested). Additionally, we imagine a causal variable that re)ects
a situation where the perception of race is counterfactually
determined before the "rst-stage decision (instead of a#er the
"rst-stage decision, as with the sateM), and is the same at both
stages.

We note that, in general—as discussed in Section 1 and
below—there is no fully coherent notion of a “total e#ect” of
race, since one cannot intervene on race, per se. In our run-
ning example, the two treatments (i.e., the o$cer’s perception
of race and the prosecutor’s perception of race) represent dis-
tinct, situation-speci"c notions of intervening on race. In this
restricted context, then, there is a natural estimand that captures
the spirit of a “total e#ect”: comparing an individual’s potential
outcomes had they been perceived as white or Black when both
the "rst- and second-stage decisions were made. We formalize
this as follows:

De!nition 4 (te). The total e"ect, denoted te, is given by

te = E[Y(b, M(b)) − Y(w, M(w))]. (11)

Unlike the sateM , which only measures discrimination in
the second decision, the total e#ect measures cumulative dis-
crimination across both decisions. In our recurring example, the
total e#ect captures the e#ect of race at the time of arrest on the
subsequent charging decision. In particular, if a charged Black
individual had instead been perceived as white by an o$cer, they
might never have been arrested, and hence, never been at risk of
being charged, a possibility encompassed by the de"nition of the
total e#ect, but not by the sateM .

We stress, however, that in studies of discrimination—
particularly racial discrimination—there is o!en no clear
intervention point, and the di#erence between the te and
the sateM is largely an artifact of how one de"nes both the
population of interest and the start of the decision-making
process. What is the te in one description of events may be the
sateM in another, equally valid description of the same events,
as we describe next.

In our running example, the implicit population of inter-
est consists of those individuals stopped by the police, and
the te re)ects a description of events in which the decision-
making process starts—and perception of race is counterfac-
tually determined—when the arrest decision is made. We can,
however, imagine moving back the clock and starting the pro-
cess when the stop decision is made, with the population of
interest now comprising those individuals spotted by an o$cer.
In this case, the original te is equivalent to the sateM on
this newly de"ned population, where the "rst-stage decision
indicates whether an individual was stopped. Both the original

te and the new sateM capture combined discrimination in the
arrest and charging decisions, among the subset of individuals
who were stopped.7

But the moment when an individual is spotted is no more
statistically privileged as a starting point than the moment when
an o$cer makes a stop decision. One could similarly measure
cumulative discrimination that includes the stop decision itself,
either in terms of the te or the sateM . For the te, as above,
we imagine time starting immediately a!er a potential police
encounter, with the "rst-stage decision indicating whether an
individual was stopped (among a population of individuals
spotted by the o$cer). For the sateM , we back up the clock once
again and imagine the "rst-stage decision indicating whether
an individual was spotted by an o$cer, among an even larger
population of people walking through the neighborhood where
the o$cer patrols. Figure 1 provides a graphical depiction of this
interchangeability.8

Although the te may appear to avoid conditioning on inter-
mediate outcomes, it simply masks a complex chain of events
that came before the nominal start of the process, a chain that
itself was likely in)uenced by discriminatory decisions. For
instance, the o$cer spotting and stopping motorists in our run-
ning example could be patrolling the neighborhood in question
because of its racial composition.9 The very idea of “interme-
diate outcomes”—a concept central to concerns about post-
treatment bias—is a slippery notion in the context of discrim-
ination studies, where there is no clear point in time where one
can imagine that race is “assigned.” Even birth cannot be con-
sidered the ultimate starting point since, in theory, one might
include, at the least, the race of a child’s parents, determined at
an earlier stage, when assessing discrimination.10 Indeed, such
generational counterfactuals may be critical for understanding
systemic, institutional discrimination.

Our discussion of discrimination in multi-staged, multi-
decider scenarios applies widely, but it is not universal. In
particular, measuring discrimination in a single-decider case—
and, speci"cally, in o$cer use of force—is challenging. In
many of these single-decider scenarios, it is hard to imagine

7To be explicit, our point is that the original TE and the new SATEM are the
same quantities, and hence, are estimable using the same data. However,
the new SATEM (which subsets on individuals who are stopped among those
who are spotted) and the original SATEM (which subsets on individuals who
are arrested among those who are stopped), are, in contrast, not equal in
general, and not necessarily estimable using the same data. In particular,
if one wants to estimate either the original TE or, equivalently, the new
SATEM , the arrest decision can be viewed as an intermediate variable, and,
accordingly, subsetting to arrested individuals would in general introduce
post-treatment bias.

8The formalism above shows a certain statistical equivalence between esti-
mands having di!erent starting points of the decision-making process.
Nonetheless, the choice of starting point corresponds to measuring dis-
crimination across di!erent parts of the process, and so di!erent estimands
are relevant in di!erent contexts. As such, we do not assert any normative
ordering among them.

9Importantly, even if the population of individuals spotted by police at a
street corner is a (near) random sample of people living or working in the
neighborhood, we still cannot think of race as being randomly assigned in
that subset. In particular, spotted individuals may still di!er on a variety of
dimensions (e.g., socio-economic status) across race groups. As such, one
would need to statistically account for these di!erences in any analysis that
seeks to measure disparate treatment.

10In the case of biological sex, one might consider assignment to occur at
conception, though that is typically not the primary moment of interest in
studies of sex discrimination.
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Figure 1. This !gure illustrates estimands one could consider, and the populations they concern, as individuals move through one segment of the criminal justice system.
For instance, one can measure combined discrimination in arrest and charging decisions either via the TE or the SATEM . In studies of discrimination, there is no clear point at
which race is “assigned” and so both the TE and the SATEM can be used interchangeably to express the same underlying causal e"ect, the TE with respect to the population
of stopped individuals, and the SATEM with respect to the population of spotted individuals. More generally, the diagram illustrates a multistage process, where one seeks
to measure discrimination culminating at stage tk+2 (e.g., charging decisions) among those who make it to stage tk (e.g., those who were stopped by the police). This
quantity can be viewed as the TE, where one imagines the process starting at time tk . Alternatively, it can be viewed as the SATEM , where one views the process as starting
earlier (at, say, tk−1, indicating that an o#cer spotted an individual), and then conditioning on those who made it to stage tk . Note that the quantities themselves are
formally de!ned—and equivalent in the manner just described—even absent any considerations of estimation and randomization, which are not illustrated here.

intervening on race a!er the decision-making process begins,
making it di$cult to isolate discrimination in later stages.

3. Assessing Second-Stage Discrimination in a
Stylized Scenario

Subset ignorability, in theory, is su$cient to ensure nonpara-
metrically identi"ed estimates of the sateM , even when the
"rst-stage decisions are discriminatory. We illustrate that idea
by investigating in detail a hypothetical scenario involving dis-
criminatory arrest decisions in the "rst stage and discriminatory
charging decisions in the second stage. We explore the prop-
erties of simple estimators in this setting through a simulation
study. We demonstrate that failing to adjust for a factor that
directly in)uences charging decisions can result in biased esti-
mates of discrimination in those decisions, but by accounting
for all factors that directly in)uence charging decisions—and
hence, satisfying subset ignorability—one can accurately esti-
mate the sateM , even when there is unmeasured confounding
in arrest decisions. This example further clari"es the conceptual
importance of distinguishing between an o$cer’s perception of
race and a prosecutor’s perception of race when de"ning and
estimating our quantities of interest.

We consider a hypothetical jurisdiction in which police o$-
cers observe the behavior and race of individuals who are poten-
tially engaged in speci"c criminal activity (e.g., a drug trans-
action) and then decide whether or not to make an arrest.
Subsequently, the case "les of arrested individuals—consisting
of a written copy of the o$cer’s description of the encounter
and the arrested individual’s criminal history—are brought to
a prosecutor who decides whether or not to press charges. We
assume the prosecutor only observes the documented race and
criminal record of the arrestee, and the arresting o$cer’s written
description of the encounter; accordingly, by construction, the

charging decision depends only on these three factors. For
example, the prosecutor may choose only to charge individu-
als who have several previous drug convictions and who were
reported to be engaging in a drug transaction. Importantly,
while the prosecutor has access to an o$cer’s written report, the
prosecutor does not directly observe the individual’s behavior
leading up to the arrest.

Our goal is to estimate discrimination in charging decisions,
formalized in terms of the sateM . Intuitively, if we observe every
arrested individual’s criminal history, race, and o$cer report,
then subset ignorability would hold because the prosecutor’s
charging decision depends only on these factors. Thus, with
these three covariates, we could generate valid estimates of dis-
crimination in prosecutorial decisions, even without knowing
all of the factors that led to an arrest, a decision that may
itself have been discriminatory. However, if any of these three
covariates—criminal history, race, or o$cer report—are unob-
served, we will, in general, be unable to accurately assess dis-
crimination in prosecutorial decisions. In both scenarios, with
and without unmeasured confounding, our analysis is based on
the subpopulation of arrested individuals, where we note that
the subsetting (i.e., arrest) is not in)uenced by the prosecutor’s
perception of race. In this setting, the primary concern is thus
omitted-variable bias, not post-treatment bias.

We emphasize that we seek only to estimate discrimination in
the second-stage charging decision, not cumulative discrimina-
tion stemming from both the arrest and charging decisions. In
particular, while o$cer reports may represent an inaccurate—
and discriminatory—account of events, such discrimination is
distinct from that in the charging decision itself. Similarly, crim-
inal histories re)ect a form of complex, long-term discrimina-
tion that we do not aim to measure here. Alternative, and more
expansive, notions of discrimination are important to under-
stand, but here we focus on assessing the prosecutor’s narrow
contribution to inequities at a speci"c point in the process, a
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Figure 2. A causal DAG depicting our stylized example of arrest and charging decisions, where D represents the o#cer’s perception of race, and Z represents the prosecutor’s
perception of race. O#cer arrest decisions (M) are directly in$uenced by observed criminal behavior (A) and o#cer-perceived race (D); the o#cer reports of the encounters
(R) are directly in$uenced by A and D. Prosecutorial charging decisions are made for all arrested individuals, and are directly in$uenced by o#cer reports (R), criminal history
(X), and prosecutor-perceived race (Z). Finally, an individual’s self-identi!ed race (S) in$uences the o#cer’s perception of race (D), and is confounded with criminal history
(X) and behavior (A). We consider two scenarios. The variables highlighted in dark gray (i.e., M, Z, X , and Y) are always observed. In one scenario, the analyst also observes
the o#cer report R, highlighted in light gray, obtaining the full set of information available to the prosecutor; in the other, the analyst does not observe the o#cer report
R (i.e., only M, Z, X , and Y are observed), leading to omitted-variable bias.

common statistical objective closely tied to policy decisions and
legal theories of disparate treatment (Jung et al. 2018).

3.1. The Data-Generating Process

We now formally describe the data-generating process for our
stylized example. Under the structural causal model we con-
sider, we can both compute the true sateM and compute esti-
mates based only on select information available to the pros-
ecutor. In de"ning the generative process, we closely follow
the terminology and conventions of Pearl (2009) and Pearl,
Glymour, and Jewell (2016).11

Our model is de"ned in terms of the causal directed acyclic
graph (DAG) depicted in Figure 2. In this model, S ∈ {w, b}
indicates one’s self-identi"ed race, and D and Z indicate, respec-
tively, an o$cer’s and a prosecutor’s perception of race. Further,
M ∈ {0, 1} indicates the arrest decision, and Y ∈ {0, 1} indicates
the charging decision. Finally, A corresponds to an individual’s
behavior, as observed by an o$cer, and X and R correspond,
respectively, to criminal history and an o$cer’s description of
an encounter, as included in the arrest report. For simplicity,
in our example these latter three variables are operationalized

11In particular, we follow Pearl (2009) in representing unobserved confound-
ing by bidirectional dashed arrows; see Section 1.2.1. We do deviate from
Pearl in one aspect of our notation: we write counterfactuals as Y(z, m)
instead of Yz,m(u), suppressing the notational dependence on u. The for-
mer notation aligns with the popular Rubin-Neyman potential outcome
notation that we use when de"ning the SATEM . We further note that this SEM
is included primarily for illustrative purposes, and consequently contains
some simpli"cations, such as strictly binary covariates. In practice, we
recommend reasoning about subset ignorability and its relevant potential
outcomes directly.

as being binary—for example, one can imagine that X indicates
whether an individual had at least one previous drug conviction,
A indicates whether they were seen actively engaging in a drug
transaction, and R indicates whether they were reported by the
o$cer to be actively engaging in a drug transaction. O$cers
observe D, A, and R for all individuals; prosecutors observe Z,
X, and R only for the subset of arrested individuals. Note that we
also allow for Z and R to be missing (i.e., to take the value NA)
in cases where an individual is not arrested.

Structural causal models are de"ned by a set of exogenous
random variables and deterministic structural equations spec-
ifying the values of all other variables in the DAG. In our
example, the independent exogenous variables are:

UL ∼ Bern(µL),
UA, UM , UX , UR, UY ∼ Unif(0, 1),

where µL is an appropriately de"ned constant.
We de"ne self-identi"ed race (S), behavior (A), and criminal

history (X) in terms of UL, which captures latent confounding.
For constants µA, γ , µX , and δ, the structural equations for these
three variables are given by

fS(uL) =
{

w uL = 0,
b uL = 1,

fA(uA, uL) = 1(uA ≤ µA + γ · uL),
fX(uX , uL) = 1(uX ≤ µX + δ · uL).

This speci"cation allows for the distributions of criminal history
and behavior to vary by race due to exogenous factors like
disparate police deployment and historical discrimination. For
example, stopped Black individuals may be less likely to be
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engaged in criminal activity than stopped white individuals,
corresponding to γ < 0.

In line with our discussion in Section 2.1, we set the pros-
ecutor’s perception of race (Z) equal to the o$cer’s perception
of race (D), and, for simplicity, we set both equal to one’s self-
identi"ed race (S). This choice yields the following structural
equations:

fD(s) = s,

fZ(m, d) =
{

d m = 1,
NA m = 0.

Note that, when someone is not arrested, we represent the
prosecutor’s perception of race as an explicit missing value. The
arrest report, R, is treated similarly below.

Finally, for constants α0, αA, αblack, λ0, λA, λblack, β0, βX ,
βR, and βblack, the structural equations for arrest decisions (M),
police reports (R), and charging decisions (Y) are given by

fM(d, a, uM)

= 1(uM ≤ α0 + αA · a + αblack · 1(d = b)),
fR(d, a, m, uR)

=
{
1(uR ≤ λ0 + λA · a + λblack · 1(d = b)) m = 1,
NA m = 0,

fY(z, m, r, x, uY)

=






1(uY ≤ β0 + βX · x + βR
· r + βblack · 1(z = b)) m = 1 ∧ z )= NA ∧ r )= NA,
NA m = 1 ∧ (z = NA ∨ r = NA),
0 m = 0.

In particular, arrest decisions and police reports depend on an
o$cer’s perception of race, whereas charging decisions depend
on a prosecutor’s perception of race. This model incorporates
both discrimination in arrest decisions, via αblack, and discrim-
ination in police reports—for example, by omitting potentially
exculpatory details or by falsifying information—via λblack. Dis-
crimination in charging decisions is encoded by βblack.

The above structural equations, together with the distribu-
tions on the exogenous variables, fully de"ne the joint distribu-
tion of realized and potential outcomes. In particular,

S = fS(UL), D = fD(S),
Z = fZ(M, D), A = fA(UA, UL),
X = fX(UX , UL), M = fM(D, A, UM),
R = fR(D, A, M, UR), Y = fY(Z, M, R, X, UY).

The primary causal quantity we seek to estimate—the
sateM—is de"ned in terms of counterfactuals Y(z, m). As
discussed in Pearl (2009) and Pearl, Glymour, and Jewell (2016),
such counterfactuals require some care to de"ne, as one must
appropriately account for the exogenous variables U. In particu-
lar, for the causal DAG in Figure 2, the bivariate charge potential
outcomes, for counterfactual versions of prosecutor-perceived
race, are given by Y(z, m) = fY(z, m, R(m), X, UY), where
R(m) = fR(D, A, m, UR) are the counterfactual versions of the
o$cer report. Further, the arrest potential outcomes—where
we consider counterfactual versions of o$cer-perceived race—
are given by M(d) = fM(d, A, UM). In general, counterfactuals

de"ned in this way obey the consistency rule, meaning that
M = M(D) and Y = Y(Z, M).

When αblack ≥ 0, anyone who would be arrested if white
would also be arrested if Black (i.e., M(b) ≥ M(w)). When
αblack > 0, we say arrest decisions are discriminatory since, all
else being equal, an individual is more likely to be arrested if they
were Black than if they were white. Likewise, Y(b, 1) ≥ Y(w, 1)

when βblack ≥ 0, meaning that an individual who would be
charged if arrested and white would also be charged if arrested
and Black. We say the charging decision is discriminatory when
βblack > 0.

3.1.1. Features of Our Data-Generating Process
Table 1 displays a sample of "ve rows of data generated from our
model. From the full set of potential outcomes, we can compute
the true sateM by directly applying De"nition 1 to the generated
data, taking the average di#erence between Y(b, 1) and Y(w, 1)

among arrested individuals.12 However, given the simple linear
form of our structural equations, a straightforward calculation
also shows that the sateM is exactly equal to βblack.

Our hypothetical example captures three key features of real-
world discrimination studies. First, prosecutorial records do
not contain all information that in)uenced o$cers’ "rst-stage
arrest decisions (i.e., prosecutors only observe R, not A). Second,
our set-up allows for situations where the arrest decisions are
themselves discriminatory—those where αblack > 0—or the
o$cer’s report is discriminatory, for example, because of omis-
sion of exculpatory information or deliberate falsi"cation—
those where λblack > 0. Third, the prosecutor’s records include
the full set of information on which charging decisions are based
(i.e., Z, X, and R).

Among those who were arrested, the charging potential out-
comes depend only on one’s criminal history (X) and the arrest
report (R). In particular, they do not depend on one’s real-
ized, prosecutor-perceived race (Z). Consequently, Y(z, 1) ⊥⊥
Z | X, R, M = 1, meaning that the model satis"es subset ignor-
ability relative to X and R. As a result, access to X and R, along
with overlap, guarantees the strati"ed di#erence-in-means is a
consistent estimator of the sateM , even if one does not have
access to A.13 However, in general, Y(z, 1) )⊥⊥ Z | X, M = 1
(and, likewise, Y(z, 1) )⊥⊥ Z | R, M = 1), and so if one only has
partial information on charging decisions there is no guarantee
the sateM can be consistently estimated.14 Indeed, when there

12Because Z and D are separately manipulable in our framing, this quantity—
obtained by "rst subsetting on arrested individuals, and then comput-
ing the average di!erence between potential outcomes—can also be
expressed in the do-calculus: SATEM = E[Y | do(Z = b), M = 1] −
E[Y | do(Z = w), M = 1]. However, as is common in causal mediation anal-
ysis, if there were only one indecomposable treatment (e.g., if one instead
imagined directly manipulating S) then the corresponding estimand could
no longer be expressed using do-operations alone (Pearl 2009, 2015).

13In general, "rst-stage discrimination such as discriminatory arrest decisions
or fabrication of evidence in arrest reports does not a!ect the consistency
of the strati"ed di!erence-in-means estimator, since subset ignorability will
continue to hold. Consistency may fail if discrimination is so extreme that
overlap fails, for example, if no white people are arrested.

14In the prosecutorial context, su#ciently diligent data gathering can mit-
igate this possibility; many o#ces maintain detailed case "les, and we
make use of such records in our empirical analysis in Section 4. In general
studies of discrimination, it is important to ensure that decision factors are
accurately captured and made available to analysts.
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Table 1. A sample of potential and realized outcomes for individuals in our hypothetical example.

S D A X M(b) M(w) M Z R R(0) R(1) Y(b, 1) Y(w, 1) Y

b b 0 0 0 0 0 NA NA NA 0 0 0 0
b b 0 1 0 0 0 NA NA NA 1 1 0 0
b b 1 1 1 0 1 b 10 NA 0 1 1 1
w w 0 0 1 1 1 w 1 NA 1 0 0 0
w w 0 1 0 0 0 NA NA NA 0 0 0 0

Note: The data-generating process produces the full set of entries, but the prosecutor only observes the realized outcomes for those who were arrested, indicated by the
shaded cells. In the !rst scenario we consider, the analyst also observes all the information in the shaded cells; in the second scenario, the analyst only observes the
information in the dark gray cells (i.e., the analyst does not observe the o#cer report R), leading to omitted-variable bias.

is such unmeasured confounding in the prosecutor’s decisions,
one should expect biased estimates of the sateM .

3.2. Estimating the SATEM

Although the data-generating procedure produces the full
set of potential outcomes for each individual, the prosecutor
only observes a subset of the cells—realized outcomes for
arrested individuals, highlighted in gray in Table 1. While
this circumscribes the causal e#ects one can estimate—for
example, discrimination by police will no longer be identi"able
in the reduced dataset—one can still learn about the sateM .
We explore the performance of two statistical methods for
estimating the sateM based on data observed by the prosecutor:
the strati"ed di#erence-in-means estimator described in
Equation (9), and a regression-based estimator. We apply each
of these methods to two types of data: the full set of information
available to prosecutors (i.e., Y , Z, X and R), and an incomplete
dataset comprised only of Y , Z, and X (highlighted in dark
gray in Table 1), in which case we view R as an unmeasured
confounder.

One can compute the strati"ed di#erence-in-means estimate
in three steps. First, partition arrested individuals into subsets
that have the same value of the available control variables (i.e.,
X and R in the complete data setting, and X alone in the partial
data setting). Second, on each resulting subset, compute the
average di#erence in charging rates between Black and white
individuals. Third, take a weighted average of these di#erences,
where the weights re)ect the proportion of arrested individuals
in each subset. In addition, one can apply Equation (10) to
estimate the standard error of this point estimate to generate
con"dence intervals.

The strati"ed di#erence-in-means estimator is theoretically
appealing in that it is guaranteed to yield consistent estimates of
the sateM when subset ignorability and overlap hold. But the
estimator can have high variance when the dimension of the
covariate space is high and the sample size is small. Thus, in
practice, it is common to model potential outcomes as a func-
tion of observed covariates—also known as response surface
modeling (Hill 2011). In particular, on the subset of arrested
individuals, one can estimate the sateM via a parametric model
that estimates observed charging decisions as a function of the
available information.

To demonstrate this latter approach, we use a linear proba-
bility model. In the complete data setting, we have:

E[Y | Z, X, R] = β0 + β1Z + β2X + β3R, (12)

where the model is "t on the full set of arrests seen by the prose-
cutor. Under this model, the sateM is approximated by the "tted
coe$cient β̂1, since that term captures the di#erence in charging
potential outcomes a!er adjusting for the observed covariates.
For our speci"c stylized example, the linear regression model in
Equation (12) is in fact perfectly speci"ed—exactly mirroring
the prosecutor’s charging decisions—and so we are guaranteed
to obtain statistically consistent estimates. In the partial data
setting, where an analyst only has access to X, one must "t a
reduced model that excludes R:

E[Y | Z, X] = β0 + β1Z + β2X. (13)

In this case, β̂1 in general yields a biased estimate of the sateM ,
because of the omitted variable R. The strati"ed di#erence-in-
means estimator will in general similarly yield a biased estimate
of the sateM in this omitted-variable setting.

3.3. Simulation Results

We perform a simulation study to understand the properties
of the above estimators, varying our assumptions about dis-
crimination and confounding. We simulate 10,000 datasets of
size 100,000 for each of 25 di#erent parameter settings. Each
setting is de"ned as a combination of our two key discrimination
parameters, αblack and βblack, where each parameter is allowed
to take one of "ve values: 0.20, 0.25, 0.30, 0.35, and 0.40. Across
all simulation settings, we assume the population of individuals
encountered by police is 30% Black (i.e., µL = 0.3); that
30% of white individuals and 40% of Black individuals have a
past drug conviction, indicated by X; and that 30% of white
individuals and 20% of Black individuals are seen engaging in
a drug transaction, indicated by A.15 These settings allow for a
substantial amount of overlap across race groups with regard to
the key covariates.

On each synthetic dataset, we estimate the sateM using both
the strati"ed di#erence-in-means estimator and the regression-
based estimator, and compare the results to the true population-
level sateM in two scenarios. To illustrate the impact of omitted
variable bias, in the "rst scenario, we assume the o$cer’s report
R is unavailable—meaning there is unmeasured confounding—
and therefore, only stratify based on X in the di#erence-in-
means estimator, and "t the model in Equation (13) for the
regression-based estimator. In the second scenario, we assume

15More speci"cally, the full set of parameters in our simulation was set as
follows: µL = 0.3, µX = 0.3, µA = 0.3, δ = 0.1, γ = −0.1, α0 = 0.1,
αA = 0.3, αblack ∈ {0.2, 0.25, 0.3, 0.35, 0.4}, λ0 = 0.2, λA = 0.6, λblack =
0.1, β0 = 0.2, βX = 0.4, βR = 0.2, and βblack ∈ {0.2, 0.25, 0.3, 0.35, 0.4}.
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Figure 3. In our hypothetical example of o#cer and prosecutor behavior, estimates of discrimination in charging decisions are biased when information directly in$uencing
those decisions—in this case, an o#cer’s report—is omitted (left). However, one can obtain accurate estimates of discrimination when accounting for all information directly
in$uencing charging decisions (right). Each plot shows the results of 10,000 simulations for each of 25 di"erent combinations of discrimination in o#cer and prosecutor
decisions, given by αblack and βblack, respectively. The true value of the SATEM , indicated by the horizontal colored lines, is computed based on the full set of potential
outcomes for each individual, and does not depend on the degree of discrimination in the !rst stage, as seen by the constant value of the SATEM across di"erent values of
αblack. For each parameter choice, we display the mean of the sampling distribution for the strati!ed di"erence-in-means estimator (solid circle) and the regression-based
estimator (hollow circle), along with the interval spanned by the 2.5th and 97.5th percentiles of the sampling distribution. In the right plot (“unconfounded”), estimates are
based on all three factors that directly in$uence charging decisions: race, criminal history, and o#cer report; in the left plot (“confounded”), we omit the report. When all
variables directly in$uencing charging decisions are available, both estimators recover the true value of the SATEM, even when there is an unknown degree of discrimination
in arrest decisions.

that R is available, and stratify on both X and R in the di#erence-
in-means estimator, and "t the model in Equation (12) for
the regression-based estimator. For each combination of αblack
and βblack, the estimates on the 10,000 synthetic datasets yield
the approximate sampling distributions for the di#erence-
in-means and regression-based estimators. In Figure 3, we
summarize each sampling distribution by its mean, 2.5th
percentile, and 97.5th percentile. The solid points correspond
to the di#erence-in-means estimator, and the hollow points to
the regression-based estimator. The horizontal lines indicate the
true population-level sateM .

In the le! panel (“confounded”) of Figure 3, the points lie
below the horizontal lines in all cases, meaning we underes-
timate discrimination in charging decisions. In this setting,
estimates do not account for the o$cer reports R, and so there
is unmeasured confounding in the charging decisions. We set
γ < 0 in our simulations, and thus, stopped and arrested
Black individuals are less likely to be engaging in criminal activ-
ity, a pattern (noisily) re)ected in the o$cer reports. Because
we assume these arrest reports are not available for analysis,
we cannot fully adjust for their direct in)uence on prosecutor
decisions. As a result, by adjusting for X alone, we miss an
important, unmeasured di#erence between arrested white and
Black individuals, leading us to underestimate discrimination
in prosecutorial decisions.

In the right panel (“unconfounded”) of Figure 3, the points
lie on the horizontal lines in all cases, meaning the estimators are
unbiased, and the range between the 2.5th and 97.5th percentiles
is relatively narrow, indicating estimates are typically close to
the true value. These results hold even when one is unable to
assess the degree of discrimination αblack in the arrest decisions.
As implied by Theorem 1, to accurately estimate the sateM , it
is su$cient to measure all covariates that directly in)uence the
prosecutor’s decisions. In practice, it is nearly always impossible

to do so perfectly; for instance, decision factors such as forensic
evidence may not be readily available, or non-obvious factors,
such as the time of day, may play a role in the prosecutor’s
charging decision. Thus, it is important to gauge the sensitivity
of estimates to unmeasured confounding in those decisions, as
we demonstrate with real-world data in Section 4. The key point
is that it is su$cient to adjust for unmeasured confounding in
the charging decisions alone; to estimate discrimination in these
charging decisions—formalized by the sateM—one need not
account for unmeasured confounding in either the documents
generated by police, such as arrest reports, or the arrest decisions
themselves.

Finally, in addition to examining the sampling distributions,
we assessed the coverage of our 95% con"dence intervals. For
the di#erence-in-means estimator, con"dence intervals were
constructed via the estimated standard error given by Equa-
tion (10); and for the regression-based estimator, we used the
conventional OLS estimate of standard error. For each parame-
ter setting, we computed the proportion of con"dence intervals
for the 10,000 datasets that contained the true value of the
sateM . In the no-confounding scenario, we found the true cov-
erage was in line with the nominal coverage, ranging from 94%
to 96% across parameter speci"cations. In the confounding sce-
nario, the intervals rarely covered the true values, as expected,
with coverage ranging from 1% to 30% across parameters.

4. An Empirical Analysis of Prosecutorial Charging
Decisions

We now apply the statistical framework developed above to
assess possible race and gender discrimination in real-world
prosecutorial charging decisions. We start with the set of indi-
viduals in a major U.S. county who were arrested for a felony
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Figure 4. We plot, for both our gender-based (left) and race-based (right) analyses, the distribution of propensity scores, disaggregated by observed treatment status. We
!nd that the propensity scores are concentrated away from the interval endpoints, satisfying overlap.

o#ense between 2013 and 2019. For our race-based analysis,
we then limit to the 25,918 instances in which the race of the
arrested individual was identi"ed as either Black (14,686) or
non-Hispanic white (11,232), and for our gender-based analysis
we limit to the 34,871 instances in which the gender of the
arrested individual was recorded as either male (29,283) or
female (5588).16

Our dataset includes a variety of information about each
case, including the criminal history of the arrested individual;
the alleged o#enses (e.g., burglary); the location, date, and time
of the incident; whether there is body-worn camera footage;
whether a weapon was involved; whether an elderly victim
was involved; and whether there was gang involvement. (See
Appendix D for additional details.) We also know the ultimate
charging decision for each case. Disaggregating by gender, 51%
of cases involving a male arrestee were charged, compared to
45% of cases involving a female arrestee; and disaggregating
by race, 51% of cases involving a Black arrestee were charged,
compared to 50% of cases involving a white arrestee.

To gauge the extent to which charging decisions may su#er
from disparate treatment by race or gender, we estimate the
sateM . We start by checking that overlap is satis"ed for both our
race-based and our gender-based analyses. Recall that overlap
means Pr(Z = z | X = x, M = 1) > 0, where Z =
1 indicates an individual’s “treatment” status (i.e., whether an
individual is male in our analysis of gender discrimination, or
Black in our analysis of racial discrimination), X is a vector
of observed case features, and M = 1 means we restrict to
those individuals who were arrested. In contrast to ignorability,
overlap can be assessed directly by examining the data. To do so,
we estimate propensity scores (Rosenbaum and Rubin 1983a),
Pr(Z = z | X = x, M = 1), via an L1-regularized (lasso) logistic
regression model. In Figure 4, we plot the distribution of the
estimated propensity scores. In the le! panel we disaggregate by
gender, and in the right panel we disaggregate by race (Black and
white). In situations where overlap does not hold, it is common
to restrict one’s analysis to a region of the covariate space where

16Both Hispanic and non-Hispanic white individuals in our dataset appear
to have been recorded simply as “white.” To disentangle these two cate-
gories, we followed past work and imputed Hispanic ethnicity from sur-
names (Word and Perkins 1996; Word et al. 2008; Pierson et al. 2020).

it does hold. In our case, however, the vast majority of the data
are already far from the endpoints of the unit interval, so we
work with the dataset in its entirety.

As discussed in Section 3, regression-based estimators can
be viewed as a parametric variant of the strati"ed di#erence-
in-means estimator !n. Thus, to help account for the high
dimensionality of our feature set, we now estimate the sateM
via linear regression. In particular, for ease of interpretation, we
use a linear probability model:

E[Y | Z, X] = β0 + β1Z + βT
2 X, (14)

where Y indicates whether an arrested individual was charged,
and X denotes the vector of covariates.

In the gender model, we "nd that the ŝateM—as given by
β̂1—is 0.025 (95% CI: [0.014, 0.037]); and in the race model, we
"nd that the ŝateM is −0.008 (95% CI: [−0.018, 0.002]). These
results indicate that the charging rate for men is slightly higher
than the rate for similar women, and that the charging rate for
Black individuals is on par with that of similar white individuals,
mirroring the patterns we saw with the raw, unadjusted charging
rates. If there are no unmeasured confounders (i.e., if subset
ignorability holds) and our parametric model is appropriate,
these results suggest race and gender have a relatively modest
impact on charging decisions in the jurisdiction we consider.

To help contextualize these results, we note that past studies
have found mixed evidence of disparate treatment in prose-
cutorial charging decisions, likely due in part to di#erences
in the jurisdictions and time periods analyzed, and the meth-
ods employed. In one of the most comprehensive investiga-
tions to date, Rehavi and Starr (2014) examined nearly 40,000
individuals in the federal criminal justice system from initial
arrest to "nal sentencing. The authors found that disparate
treatment in prosecutorial charging decisions—speci"cally for
charges with statutory mandatory minimum sentences—was a
primary driver for sentencing disparities between Black and
white individuals. In contrast, in a recent experimental study,
Robertson, Baughman, and Wright (2019) found no evidence of
racial bias in charging decisions when they presented prosecu-
tors with vignettes in which the race of the suspect was randomly
varied. Similarly, in an observational analysis of prosecutors at
the San Francisco District Attorney’s O$ce, MacDonald and
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Raphael (2021) found little evidence of discrimination in charg-
ing decisions—in fact, the authors found that white individuals
were charged slightly more o!en than similarly situated Black
individuals. Finally, in a recent quasi-random study of charg-
ing decisions at a large metropolitan district attorney’s o$ce,
Chohlas-Wood et al. (2021) similarly found little evidence of
disparate treatment.

The AUC of our outcome model in Equation (14)—"t with
all available covariates, including race and gender—is 86%, indi-
cating that it can predict charging decisions well. Our model,
however, cannot capture all aspects of prosecutorial decision
making, as at least some information used by prosecutors (e.g.,
forensic evidence) is not recorded in our dataset, meaning
that subset ignorability likely does not hold exactly. To check
the robustness of our causal estimates to such unmeasured
confounding, one may use a variety of statistical methods for
sensitivity analysis (Rosenbaum and Rubin 1983b; Imbens 2003;
McCandless, Gustafson, and Levy 2007; Carnegie, Harada,
and Hill 2016; Dorie et al. 2016; McCandless and Gustafson
2017; Franks, D’Amour, and Feller 2019; Jung et al. 2020). At
a high level, these methods posit relationships between the
unmeasured confounder and both the treatment variable (e.g.,
race or gender) and the outcome (e.g., the charging decision),
and then examine the sensitivity of estimates under the model
of confounding.

We apply a technique for sensitivity analysis recently intro-
duced by Cinelli and Hazlett (2020). In brief, their approach
bounds the extent to which a coe$cient estimate in a linear
model—like β̂1 in Equation (14)—might change if one were to
re"t the model including an unmeasured confounder U. More
speci"cally, under the extended model

E[Y | Z, X, U] = β0 + β1Z + βT
2 X + γ U,

Cinelli and Hazlett bound the change in β̂1 in terms of two
partial R2 values: R2

Y∼U | Z,X and R2
Z∼U | X . These two values,

respectively, quantify how much residual variance in the out-
come Y and treatment Z is explained by U. Formally, R2

Y∼U | Z,X
is de"ned in terms of the R2 of two linear regressions: one using
all the covariates X, Z, and U to estimate Y (R2

full), and one
excluding U (R2

red). Then, R2
Y∼U | Z,X = (R2

full −R2
red)/(1−R2

red).
The quantity R2

Z∼U | X is de"ned analogously. As these partial R2

values increase, so does the amount by which β̂2 could change.
The contour plots in Figure 5 show the maximum amount

by which the ŝateM may change as a function of R2
Y∼U | Z,X and

R2
Z∼U | X for our analysis of gender and race—with that change

potentially increasing or decreasing the estimate. The red lines
trace out values for which the maximum change equals our
empirical point estimates of the ŝateM . In particular, an unmea-
sured confounder lying above the red line could be su$cient to
change the sign of our estimate.

A key hurdle in sensitivity analysis is positing a reasonable
range for the strength of a possible unmeasured confounder. To
aid interpretation, we compute the partial R2 values for various
subsets of observed covariates, as recommended by Cinelli and
Hazlett. For each such subset, we "t the regression model in
Equation (14) both with and without that subset, which in turn
yields a pair of partial R2 values for that subset of covariates.

The contour plots in Figure 5 contain these reference points
for "ve di#erent subsets of covariates: (a) the subset describing
criminal history (e.g., number of prior convictions and number
of prior arrests); (b) the alleged o#enses (e.g., burglary); (c) the
subset of all covariates except for the alleged o#enses; (d) the
district in which the alleged incident took place; and (e) whether
a weapon was alleged to have been used. We "nd that the
partial R2 values associated with criminal history and whether a
weapon was used are below the red curves for both our analysis
of gender and race, indicating that a confounder with com-
parable marginal explanatory power to these covariates would
not be su$cient to change the sign of our estimates. However,

Figure 5. Contour plots describing the sensitivity of the ŜATEM to unmeasured confounding, for our analysis of gender (left) and race (right). The plots indicate the maximum
amount the ŜATEM may change under the Cinelli and Hazlett (2020) model of confounding, parameterized by two partial R2 values. The red curves correspond to a change
equalling the magnitude of the ŜATEM estimated from the available data. Thus, an unobserved confounder corresponding to a point above the red curve would be capable
of changing the sign of our estimate. To aid interpretation, both plots display the partial R2 values associated with several observed subsets of covariates.
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the partial R2 values corresponding to the alleged o#enses and
the district in which the charges were "led are near the red
curve for our gender-based analysis and far above the curve
for our race-based analysis, meaning that omitting a covariate
with similar explanatory power could qualitatively change our
conclusions. Furthermore, the partial R2 values corresponding
to everything except the alleged o#enses are far above the red
curve in both cases, suggesting that an unobserved confounder
of similar strength could again substantially alter our results.
For instance, in this extreme scenario, inclusion of a currently
omitted confounder with similar characteristics in the race-
based analysis could yield an estimated treatment e#ect of more
than 13%.

One cannot know the exact nature and impact of unmea-
sured confounding. Thus, as in many applied statistical prob-
lems, we must rely in large part on domain expertise and intu-
ition to form reasonable conclusions. In this case, given the
results of our sensitivity analysis, we interpret our empirical
"ndings as providing evidence that perceived gender and race
have limited e#ects on prosecutorial charging decisions in the
jurisdiction we consider. As with the sateM , our sensitivity
analysis is solely focused on discrimination in the charging
decision, and, in particular, is not designed to capture the cumu-
lative e#ects of discrimination stemming from arrests and other
earlier decision points.

5. Discussion

We have outlined a formal causal framework to ground obser-
vational studies of discrimination. We speci"cally showed that
subset ignorability, together with overlap, is su$cient to guar-
antee that one important causal measure of discrimination (the
sateM) is nonparametrically identi"ed in a canonical two-stage
decision-making setting. In this context, we therefore, believe
potential issues of post-treatment bias are more appropriately
thought of as concerns about omitted variables. Indeed, our
treatment of interest—perception of race by the second decision
maker—occurs a!er the subsetting in the "rst stage, and so it
is not post-treatment relative to the selection process. As such,
we demonstrated that a traditional regression-based analysis
can be used to assess discrimination in real-world prosecutorial
charging decisions, even though the underlying arrests may
have been discriminatory in unknown ways. In that example—
as in many applied settings—subset ignorability may only hold
approximately, and our empirical analysis illustrates the impor-
tance of sensitivity analysis for robust inference.

Measurements of the sateM can be an important step
in quantifying discrimination by speci"c decision makers at
speci"c points in time. In our running example, estimates of
the sateM can help identify prosecutors who may be making
systematically biased charging decisions. Identi"cation of bias,
however, is only the "rst step toward reform. To mitigate iden-
ti"ed disparities, one could imagine a variety of interventions,
such as training programs (Spencer, Charbonneau, and Glaser
2016), or blinding prosecutors to the race of arrested individuals
(Chohlas-Wood et al. 2021). As with all interventions, care must
be taken to ensure they do not have unintended consequences.
Changes in prosecutorial policies could have negative spillover,

for example on policing, or unexpected equilibrium e#ects, such
as overall harsher charging decisions.

The sateM is but one way to characterize and inform inter-
ventions designed to reduce discriminatory behavior. There are
at least two broad notions of discrimination, which approxi-
mately map to the legal concepts of disparate treatment and
disparate impact. Both involve causal interpretations, though
with key di#erences in the de"nition of the estimand. Disparate
treatment concerns the causal e#ect of race on outcomes—as
we formalize here by the sateM—with behavior o!en driven
by animus or explicit racial categorization. Disparate impact, on
the other hand, concerns the causal e#ect of policies or practices
on unjusti"ed racial disparities, regardless of intent. Disparate
treatment and disparate impact both play important roles in
legal and policy discussions, and the perspective one adopts in
any given situation a#ects the choice of statistical estimation
strategy and the interpretation of results (Jung et al. 2018).

We have throughout focused on the statistical foundations
and measurement of disparate treatment. In our primary exam-
ple, we estimate—assuming subset ignorability holds—that per-
ceived race and gender have relatively small e#ects on prose-
cutorial charging decisions in the jurisdiction we examine. We
further demonstrate that these estimates are moderately robust
to potential omitted-variable bias. However, that "nding, in and
of itself, does not mean charging decisions are equitable in a
broader sense. Consider, for example, the 1637 cases in our data
involving alleged possession of controlled substances by Black
or non-Hispanic white individuals. Of these, 748 cases (46%)
were ultimately charged, and charging rates by race were nearly
identical across race groups, o#ering little prima facie evidence
of disparate treatment. However, among the 748 charged cases,
464 (62%) involved a Black individual—far exceeding the pro-
portion of Black residents in the county we study. Charging
decisions for these cases thus impose a heavy burden on Black
individuals, even if those decisions were not tainted by animus.
To the extent that prosecution of drug crimes is misaligned
with community goals, these decisions create an unjusti"ed, and
discriminatory, disparate impact.

Rigorously estimating discrimination is a daunting task that
requires careful consideration. At an empirical level, it is o!en
di$cult to obtain detailed data on individual decisions, in which
case benchmark analysis may be inadequate—even if coupled
with sensitivity analysis. At a theoretical level, we have a limited
statistical language to make precise concepts such as animus and
implicit bias that are central to discrimination research. Further,
as we note above, past work has o!en framed discrimination as
the causal e#ect of race on behavior, but other conceptions of
discrimination, such as disparate impact, are equally important
for assessing and reforming practices. Finally, the conclusions
of discrimination studies are generally limited to speci"c deci-
sions that happen within a long chain of potentially discrim-
inatory actions. Quantifying discrimination at any one point
(e.g., in charging decisions) does not yield estimates of speci"c
or cumulative discrimination at other points (e.g., in arrest
decisions). Despite these important considerations, we hope our
work helps place discrimination research on more solid statisti-
cal footing, and provokes further interest in the subtle concep-
tual and methodological issues at the heart of discrimination
studies.
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Appendix A: A Comparison to Alternative Ignorability
Conditions

To better understand subset ignorability, we compare it to alterna-
tive conditions that recently have been proposed in the context of
discrimination studies. In particular, we compare subset ignorability
to a set of assumptions introduced by Knox, Lowe, and Mummolo
(2020), which they call treatment ignorability, mediator ignorability,
and mediator monotonicity. We show that this set of assumptions,
like subset ignorability, is su$cient—but not necessary—to ensure
the sateM is nonparametrically identi"ed by data on second-stage
decisions. Importantly, however, the Knox, Lowe, and Mummolo con-
ditions are unlikely to be satis"ed in important examples of potentially
discriminatory decision making where subset ignorability holds (either
exactly or approximately) and the sateM accordingly can be estimated,
like those situations presented in Sections 3 and 4.

Aside from the Knox, Lowe, and Mummolo conditions, it is instruc-
tive to compare subset ignorability to sequential ignorability (Imai,
Keele, and Tingley 2010a; Imai, Keele, and Yamamoto 2010b), a pop-
ular and o!en useful concept that was introduced to formalize causal
mediation analysis, and one that is closely related to the Knox, Lowe,
and Mummolo conditions. Sequential ignorability is strictly stronger
than subset ignorability, meaning that the former implies the latter but
that the converse does not hold. In the setting of discrimination studies,
there is little reason to believe sequential ignorability—or reasonable
approximations of it—would be satis"ed, and we primarily discuss the
idea to clarify its distinction from subset ignorability.

The alternative ignorability conditions considered here were devel-
oped in the context of a single treatment. Therefore, to facilitate a
direct comparison between subset ignorability and these alternatives,
we adopt this single-treatment perspective throughout the Appendix.
As discussed in the main text, there are substantive issues with positing
a single manipulation of (perceived) race, gender, or other immutable
characteristics in many multi-stage settings. Formally, however, it is
straightforward to collapse Z and D to a single treatment—which we
call Z—that a#ects both the "rst-stage and the second-stage decisions.
In particular, we now assume the potential outcomes M(z) and Y(z, m)

satisfy the consistency relations M = M(Z) and Y = Y(Z, M). We
emphasize that in this new framing, the de"nition of subset ignorability
in Equation (4) remains the same and that Theorem 1 likewise holds
unaltered—since neither explicitly references the "rst-stage potential
outcomes.17

We start by formally considering sequential ignorability, following
Imai, Keele, and Tingley (2010a); Imai, Keele, and Yamamoto (2010b).

De!nition A.1 (Sequential ignorability). We say that sequential ignor-
ability is satis"ed when the following two conditional independence

17As noted in Footnote 12 above, since we have restricted to the context of a
single treatment Z, many of the quantities we consider are not expressible
via the do-calculus, though they are still expressible in terms of potential
outcomes. We emphasize that these potential outcomes should be under-
stood in the conventional sense (Pearl 2009): Y(z, 1) represents what would
have resulted for an individual if, counterfactually, one had intervened on
M so that M = 1 and Z so that Z = z. Although directly manipulating the
"rst-stage decision so that M = 1 may be implausible in some situations—
for instance, it may be challenging in practice to intervene on an arresting
o#cer’s decision—no issue arises in our setting as we are only concerned
with the outcomes Y(z, 1) for individuals who would be arrested in the
absence of such an intervention (i.e., where it is already the case that
M = 1). Moreover, while the FFRCISTG framework (Robins 1986; Richardson
and Robins 2013) may consider these to be “cross-world” counterfactual
quantities, we note that recent extensions of these frameworks discussed in
Robins, Richardson, and Shpitser (2020) could accommodate our estimand
and identifying assumptions by allowing for the race variable to be split
into race variables that are time- and context-speci"c, as we did in the main
body of the article.

criteria hold:

{Y(z′, m), M(z)} ⊥⊥ Z | X, (A.1)
Y(z′, m) ⊥⊥ M | Z, X, (A.2)

for z, z′ ∈ {w, b} and m ∈ {0, 1}.

The two key conditional independence assumptions we list are the
same as in the de"nition of sequential ignorability given by Imai, Keele,
and Tingley (2010a); Imai, Keele, and Yamamoto (2010b), but to facil-
itate direct comparison with other ignorability criteria, we omit from
our de"nition the accompanying overlap conditions. Also, for ease of
exposition, we present the de"nition in the setting of binary treatment
and mediator variables, though the original was more general. In the
context of our running example, sequential ignorability means that: (a)
conditional on the observed covariates X, the potential outcomes for
charging Y(z, m) and arrest M(z) are jointly independent of an indi-
vidual’s actual race Z; and (b) conditional on the observed covariates X
and an individual’s race Z, the arrest decision M is independent of the
potential charging outcomes Y(z, m).

Theorem A.1, below, shows that sequential ignorability implies
subset ignorability, but also, importantly, that sequential ignorability is
a strictly stronger condition. To understand why, consider the stylized
model of Section 3.1, in which one has all of the information that drives
a prosecutor’s charging decision—satisfying subset ignorability—but
not all of the information that drives an o$cer’s arrest decision. For
example, suppose the prosecutor has access to the o$cer’s report, but
not the arrested individual’s actual behavior. In this case, one would in
general expect the "rst condition of sequential ignorability—in Equa-
tion (A.1)—to be violated. In particular, without detailed data on what
an o$cer observes, there is little reason to think the arrest potential
outcomes, M(z), would be independent of an individual’s race, even
controlling for factors available to the prosecutor.

We next formally present the de"nitions of treatment ignorability,
mediator ignorability, and mediator monotonicity proposed by Knox,
Lowe, and Mummolo, starting with treatment ignorability.

De!nition A.2 (Treatment ignorability). Treatment ignorability is the
combination of the following two conditional independence criteria:
for z, z′ ∈ {w, b} and m ∈ {0, 1},

M(z) ⊥⊥ Z | X, (A.3)
Y(z′, m) ⊥⊥ Z | M(w), M(b), X. (A.4)

In the context of arrest and charging decisions, treatment ignorabil-
ity means that: (a) the potential outcomes for the arrest decision M(z)
are independent of race Z, a!er conditioning on the observed covariates
X; and (b) the potential outcomes for the charging decision Y(z′, m) are
independent of race Z a!er conditioning on both the covariates X and
the arrest potential outcomes M(w) and M(b).

The "rst condition of treatment ignorability is similar to the "rst
condition of sequential ignorability, and it is unlikely to hold in our
setting for the same reason. In general, given only information about
what motivates the second-stage decision (e.g., charging, in our case)
one cannot say much about what occurs in the "rst stage (e.g., arrest).
But, critically, such information about the "rst stage is not necessary
to estimate the sateM , which only quanti"es discrimination in the
second-stage decision. Theorem 1 makes that statement precise, show-
ing that subset ignorability—which does not consider "rst-stage poten-
tial outcomes—is su$cient to ensure the sateM is nonparametrically
identi"ed by the second-stage data.

The second criterion of treatment ignorability appears similar in
spirit to subset ignorability, but it conditions on the potential outcomes
M(w) and M(b) rather than on the actual outcome M. In practice, that
distinction may not be too signi"cant; in theory, however, the di#erence
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between the two is large. As we show in Theorem A.1 below, treatment
ignorability alone—even with its strong assumption on the "rst stage—
is not su$cient to ensure the sateM is identi"ed by the second-stage
data.

Finally, we consider mediator ignorability and the related mediator
monotonicity condition.

De!nition A.3 (Mediator ignorability). For z ∈ {w, b} and m ∈ {0, 1},
mediator ignorability is satis"ed when

Y(z, m) ⊥⊥ M(w) | Z = z, M(b) = 1, X. (A.5)

De!nition A.4 (Mediator monotonicity). Mediator monotonicity is sat-
is"ed when

M(b) ≥ M(w). (A.6)

In our running example, mediator ignorability means that the
charging potential outcomes Y(z, m) are independent of one of the
arrest potential outcomes—M(w), the arrest decision for (counterfac-
tually) white individuals—conditional on the observed covariates X,
and among individuals of race Z = z, who would be arrested if they
were Black. The asymmetry in this condition stems from the additional
mediator monotonicity constraint considered by Knox, Lowe, and
Mummolo: M(b) ≥ M(w), meaning that an individual who would
be arrested if white would also be arrested if Black. The monotonicity
condition is perhaps intuitively plausible given our understanding

of racial discrimination, but the conditional independence assumption
of mediator ignorability appears harder to interpret.

Having introduced the key de"nitions, we now present our main
analytic result, Theorem A.1, which summarizes and formalizes our
discussion of the various ignorability assumptions and their connec-
tions to estimating discrimination. In particular, we show that sequen-
tial ignorability is a strictly stronger assumption than subset ignora-
bility, and recapitulate (from Theorem 1) that subset ignorability is a
su$cient condition for the di#erence-in-means estimator !n to yield
consistent estimates of the sateM . Further, we show that treatment
ignorability is not a necessary condition for !n to yield consistent
estimates. We show this by explicitly constructing examples for which
!n

a.s.→ sateM , but which violate the treatment ignorability condition.
We additionally show that treatment ignorability is not a su$cient
condition to guarantee consistency, despite its formal resemblance to
the (su$cient) subset ignorability condition. To do so, we construct
a family of observationally equivalent examples that satisfy treatment
ignorability but which have di#erent values of the sateM . Accordingly,
no estimator, including !n, can yield a consistent estimate of the sateM
for every instance in the family. Importantly, the more conventional
assumption of subset ignorability is su$cient to ensure the sateM can
be identi"ed from data on the second-stage decisions.

Theorem A.1. Assume overlap holds, meaning that Pr(Z = z | X =
x, M = 1) > 0 for all x and z. Then we have the following collection of
implications and nonimplications

Proof. Theorem 1 shows that subset ignorability implies that !n is
a consistent estimator of the sateM . We show the remaining seven
implications and nonimplications in turn, starting with the claim that
sequential ignorability implies subset ignorability. In particular, we
prove that the conjunction of treatment ignorability, mediator ignor-
ability, and mediator monotonicity implies that !n is a consistent
estimator of the sateM—a fact initially suggested by Knox, Lowe, and
Mummolo

Case 1 (Sequential ignorability implies subset ignorability). The
"rst condition of sequential ignorability, in Equation (A.1), states
that Y(z, m) and M(z′) are jointly independent of Z given X:
{Y(z, m), M(z′)} ⊥⊥ Z | X. From this, it immediately follows that
Y(z, m) alone is independent of Z given X: Y(z, m) ⊥⊥ Z | X. Now,
because Y(z, m) ⊥⊥ M | Z, X—which is the second condition of
sequential ignorability, in Equation (A.2)—we have that Y(z, m) ⊥⊥
{Z, M} | X, by the contraction property of conditional independence.
Therefore, by the weak-union property,

Y(z, m) ⊥⊥ Z | M, X. (A.7)

Subset ignorability now follows, as it is the special case in which M = 1
in Equation (A.7).

Case 2 (Subset ignorability does not imply sequential ignorability).
Sequential ignorability is an intuitively stronger condition than subset
ignorability, as the former requires that Z is independent of the
mediator potential outcomes M(z) given X. Indeed, the synthetic
example given in Section 3 satis"es subset ignorability but violates
sequential ignorability.

To formally establish our claim, we construct an even simpler
example that satis"es subset ignorability but not sequential ignorability.
First, suppose that Y(z, 1) = 1 and Y(z, 0) = 0, deterministically
for z ∈ {b, w}. In particular, using the language of our policing and
prosecution application, everyone who is arrested is charged, regardless
of race. We further set X = 1, which e#ectively means that there are no
contextual variables. Finally, we set

Pr(Z = z, M(b) = mb, M(w) = mw)

= Pr(Z = z) · Pr(M(b) = mb | Z = z)
· Pr(M(w) = mw | Z = z),

(A.8)
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where Pr(Z = z) = 1
2 , Pr(M(z) = 1 | Z = w) = 1

2 , and Pr(M(z) =
1 | Z = b) = 1. Note that M = M(Z) and Y = Y(Z, M), and so the
above description fully de"nes the joint distribution on all the relevant
variables.

Now, because Y(z, 1) = 1, we trivially have that Y(z, 1) ⊥⊥ Z | M,
meaning that subset ignorability is satis"ed. But, because M(z) )⊥⊥ Z,
sequential ignorability is violated.

Case 3 (Consistency of !n does not imply subset ignorability holds). At a
high level, even if the potential outcomes Y(z, 1) are not independant of
Z—violating subset ignorability—!n can still be a consistent estimator
when there is appropriate cancelation. For a concrete illustration of this
in the context of our two-stage arrest and charging application, consider
a simple example in which: (a) there are no contextual variables (i.e.,
X = 1); (b) the population is evenly split across race groups (i.e.,
Pr(Z = z) = 1

2 ); (c) everyone in the population is arrested (i.e.,
M = 1); and (d) the prosecutor’s potential decisions depend on an
arrestee’s actual race. Speci"cally, we set Y(z, 0) = 0 and Y(z, 1) to be
a Bernoulli random variable distributed as follows:

Pr(Y(z, 1) = 1 | Z) =






1 z = b ∧ Z = b,
0 z = w ∧ Z = b,
1
2 Z = w.

(A.9)

Because Y = Y(Z, M), the above relationships completely specify the
joint distribution of Y , Z, M, and X.

Subset ignorability is violated in this example since, by Equa-
tion (A.9), Y(z, 1) )⊥⊥ Z. (Because X and M are constant, we need not
condition on them when considering the subset ignorability criterion.)
We further have,

sateM = E[Y(b, 1) | M = 1] − E[Y(w, 1) | M = 1]
= (E[Y(b, 1) | Z = b] − E[Y(w, 1) | Z = b]) · Pr(Z = b)

+ (E[Y(b, 1) | Z = w] − E[Y(w, 1) | Z = w]) · Pr(Z = w)

= (1 − 0) · 1
2

+
(1

2
− 1

2

)
· 1

2

= 1
2

.

Finally,

limn→∞ !n
a.s.= E[Y | Z = b, M = 1] − E[Y | Z = w, M = 1]

= 1 − 1
2

= sateM .

Thus, even though subset ignorability is violated in this example, !n
yields a consistent estimate of the sateM .

Case 4 (Consistency of !n does not imply treatment ignorability holds).
Consider the example described in Case 2. As discussed there, subset
ignorability is satis"ed in that example and so, by Theorem 1, !n is
a consistent estimator of the sateM . However, that example does not
satisfy treatment ignorability, as M(z) )⊥⊥ Z, contrary to Equation (A.3).
(Because X is constant, we need not condition on it when evaluating the
treatment ignorability criterion.)

Case 5 (Consistency of !n does not imply that treatment ignorability,
mediator ignorability, and mediator monotonicity hold). This is directly
implied by Case 4.

Case 6 (Treatment ignorability does not imply !n is a consistent esti-
mator of the sateM). We show, more generally, that the sateM is not
identi"able under treatment ignorability alone. To do so, we construct
a family of observationally equivalent examples that satisfy treatment

ignorability but which have di#erent values of sateM . As a result,
no estimator—including !n—can consistently estimate the sateM for
every example in this family.

We construct the family of examples as follows. First, as in the other
cases, we set X = 1, so that there are e#ectively no contextual variables,
and we set Y(z, 0) = 0, meaning that if an individual were not arrested,
that individual could not be charged. Second, we set M(b) = 1,
meaning that everyone in the population would be arrested if they were
Black. Finally, we set

Pr(Y(z, 1) = yzm, M(w) = mw, Z = z)
= Pr(Y(z, 1) = yzm | M(w) = mw)

· Pr(M(w) = mw) · Pr(Z = z),
(A.10)

where Pr(Z = z) = 1
2 , Pr(M(w) = mw) = 1

2 , and, for α ∈ [0, 1],

Pr(Y(z, 1) = 1 | M(w)) =
{

α M(w) = 0 ∧ z = w,
1 otherwise. (A.11)

The examples we construct thus, di#er only in the choice of α.
Now, regardless of α, these examples all satisfy treatment ignor-

ability. To see this, note that M(w) ⊥⊥ Z by Equation (A.10) and
M(b) ⊥⊥ Z since M(b) is constant. Consequently, the "rst condition
of treatment ignorability is satis"ed. Equation (A.10) further implies
that Y(z, 1) ⊥⊥ Z | M(w) and, since Y(z, 0) is constant, Y(z, 0) ⊥⊥
Z | M(w), establishing the second condition of treatment ignorability.
(Because M(b) and X are constant, we need not condition on them
when considering the two treatment ignorability conditions.)

We next show that all these examples are observationally equivalent.
Intuitively, observational equivalence stems from the fact that the only
di#erence between the examples is in the distribution of Y(w, 1) for
those individuals with M(w) = 0. But for those with M(w) = 0, who
would not be arrested if they were white, we never observe Y(w, 1).

Now, to rigorously establish observational equivalence, we must
show that Pr(X = x, Y = y, Z = z | M = 1) does not depend on
the value of α. Because X is constant, we need only consider Pr(Y =
y, Z = z | M = 1). First, observe that

Pr(M = 1) = Pr(M(w) = 1, Z = w) + Pr(M(b) = 1, Z = b)

= Pr(M(w) = 1) · Pr(Z = w) + Pr(Z = b)

= 3
4 .

Further, note that

Pr(Y = y, Z = z, M = 1) = Pr(Y(z, 1) = y, Z = z, M(z) = 1),

and consider the case z = b. Then, because Y(b, 1) = 1 and M(b) = 1,

Pr(Y = y, Z = b, M = 1) =
{

0 y = 0,
1
2 y = 1. (A.12)

Now consider the case z = w. By Equation (A.10),

Pr(Y(w, 1) = y, Z = w, M(w) = 1)

= Pr(Y(w, 1) = y | M(w) = 1) · Pr(M(w) = 1) · Pr(Z = w)

= Pr(Y(w, 1) = y | M(w) = 1) · 1
4 .

By Equation (A.11), Pr(Y(w, 1) = 1 | M(w) = 1) = 1, and so,

Pr(Y = y, Z = w, M = 1) =
{

0 y = 0,
1
4 y = 1. (A.13)

Finally, combining Equations (A.12) and (A.13) with the fact that
Pr(M = 1) = 3

4 , we have

Pr(Y = y, Z = z | M = 1) =






0 y = 0,
2
3 y = 1 ∧ z = b,
1
3 y = 1 ∧ z = w.
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In particular, Pr(Y = y, Z = z | M = 1) does not depend on α, and so
the examples are all observationally equivalent.

We conclude the proof by showing that the sateM di#ers across
these examples. First, it remains to calculate Pr(M(w) = mw | M = 1).
To do so, note that

Pr(M(w) = 1, M = 1) = Pr(M(w) = 1, Z = w)

+ Pr(M(w) = 1, M(b) = 1, Z = b)

= Pr(M(w) = 1) · Pr(Z = w)

+ Pr(M(w) = 1) · Pr(M(b) = 1) · Pr(Z = b)

= 1
2

· 1
2

+ 1
2

· 1 · 1
2

= 1
2

,

and so, since Pr(M = 1) = 3
4 , it follows that Pr(M(w) = 1 | M = 1) =

2
3 .

Consequently, we have

sateM = E[Y(b, 1) | M = 1] − E[Y(w, 1) | M = 1]
= Pr(M(w) = 1 | M = 1)

· (E[Y(b, 1) | M(w) = 1, M = 1]
− E[Y(w, 1) | M(w) = 1, M = 1]) + Pr(M(w) = 0 | M = 1)

· (E[Y(b, 1) | M(w) = 0, M = 1]
− E[Y(w, 1) | M(w) = 0, M = 1])

= 2
3

· (1 − 1) + 1
3

· (1 − E[Y(w, 1) | M(w) = 0, Z = b])

= 1 − α

3
,

where second to last equality follows from Equation (A.11) and the fact
that the event {M(w) = 0 ∧ M = 1} equals {M(w) = 0 ∧ Z = b};
the "nal equality also follows from Equation (A.11), as well as the
fact that Y(z, 1) ⊥⊥ Z | M(w). We have thus, constructed a family of
observationally equivalent examples that satisfy treatment ignorability
but which have di#erent sateM , implying that the sateM is not in
general identi"able under treatment ignorability alone.

Case 7 (Treatment, mediator ignorability, and mediator monotonicity
jointly imply !n is a consistent estimator of the sateM). The proof is
in two pieces. First, we derive an expression for the sateM holding X
constant, and then prove the general claim.

Supposing X = x is constant, recall that by de"nition M = 1
if and only if M(z) = 1 where Z = z. By mediator monotonicity,
M(b) ≥ M(w). Therefore, the event {M = 1} can be partitioned into
the following two events:

• E1 = {M(b) = 1 ∧ M(w) = 1},
• E2 = {Z = b ∧ M(b) = 1 ∧ M(w) = 0}.

Recall the de"nition of the sateM in De"nition 1. It follows from the
law of total expectation that:

sateM = E[Y(b, 1) − Y(z, 1) | M = 1]
= E[Y(b, 1) − Y(z, 1) | E1] · Pr(E1 | M = 1)

+ E[Y(b, 1) − Y(z, 1) | E2] · Pr(E2 | M = 1)
(A.14)

Now, we examine each of these summands in turn. First, consider
the E1 term:

E[Y(b, 1) − Y(w, 1) | E1] = E[Y(b, 1) | E1] − E[Y(w, 1) | E1]

By the de"nition of E1 = {M(b) = 1 ∧ M(w) = 1} and the
second treatment ignorability condition, Equation (A.4), we are free to
condition both terms on the right hand side by levels of Z, yielding

E[Y(b, 1) | Z = b, E1] − E[Y(w, 1) | Z = w, E1]
= E[Y | Z = b, E1] − E[Y | Z = w, E1], (A.15)

where equality follows from replacing potential outcomes by their
realized values according to the de"nition of Y = Y(M, Z).

Next, consider the E2 term. Again,
E[Y(b, 1) − Y(w, 1) | E2] = E[Y(b, 1) | E2] − E[Y(w, 1) | E2].

It follows from mediator ignorability, Equation (A.5), and the de"nition
of E2 that

E[Y(w, 1) | E2] = E[Y(w, 1) | Z = b, M(b) = 1, M(w) = 0]
= E[Y(w, 1) | Z = b, M(b) = 1, M(w) = 1]
= E[Y(w, 1) | Z = w, M(b) = 1, M(w) = 1],

where the last equality follows from treatment ignorability, Equa-
tion (A.4). Replacing potential outcomes with their realizations, it
follows that

E[Y(b, 1) − Y(w, 1) | E2] = E[Y | Z = b, E2] − E[Y | Z = w, E1].
(A.16)

Now, we substitute Equations (A.15) and (A.16) into Equa-
tion (A.14).
sateM = (E[Y | Z = b, E1] − E[Y | Z = w, E1]) · Pr(E1 | M = 1)

+ (E[Y | Z = b, E2] − E[Y | Z = w, E1]) · Pr(E2 | M = 1)

= (E[Y | Z = b, E1] − E[Y | Z = w, M = 1]) · Pr(E1 | M = 1)

+ (E[Y | Z = b, E2] − E[Y | Z = w, M = 1])
· Pr(E2 | M = 1)

=
(
E[Y | Z = b, E1] · Pr(E1 | M = 1) + E[Y | Z = b, E2]

· Pr(E2 | M = 1)
)

−
(
E[Y | Z = w, M = 1] ·

(
Pr(E1 | M = 1)

+ Pr(E2 | M = 1)
))

= E[Y | Z = b, M = 1] − E[Y | Z = w, M = 1], (A.17)
where the second equality follows from the fact that {M = 1 ∧ Z =
w} = {E1 ∧ Z = w} by mediator monotonicity, and the last equality
follows from the facts that {M = 1 ∧ Z = b ∧ E1} = {Z = b ∧ E1},
{M = 1 ∧ Z = b ∧ E2} = {Z = b ∧ E2}, and Pr(E1 | M = 1) +
Pr(E2 | M = 1) = 1.

Now, suppose that X is not constant. Conditioning Y , Z, and M on
X = x, it follows from the law of total expectation that

E[Y(b, 1) − Y(w, 1) | M = 1]

=
∑

x
E[Y(b, 1) − Y(w, 1) | M = 1, X = x] · Pr(X = x | M = 1)

=
∑

x
E[Y | Z = b, M = 1, X = x] · Pr(X = x | M = 1)

− E[Y | Z = w, M = 1, X = x] · Pr(X = x | M = 1),
(A.18)

where the second equality follows from Equation (A.17), using the fact
that X is constant on each of the events {X = x}. Equation (A.18)
is identical to the expression in the statement of Theorem 1, and
so the estimator !n converges almost surely to the quantity on the
right-hand side of Equation (A.18) by precisely the same argument as
there.
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Appendix B: Analysis of a Restricted Family of
Distributions

Theorem A.1 shows that treatment ignorability, mediator ignorability,
and mediator monotonicity are jointly su$cient but not necessary to
identify the sateM from data on second-stage decisions. We show that
this non-necessity holds even if we restrict to distributions compatible
with a particular causal DAG considered by Knox, Lowe, and Mum-
molo, shown in Figure B.1, where an unobserved confounder Q directly
in)uences the "rst-stage decisions M (e.g., arrests) and the second-
stage decisions Y (e.g., charging). To do so, we explicitly construct a
counterexample in which: (a) the joint distribution of random variables
is compatible with this causal DAG; (b) mediator ignorability is vio-
lated; and (c) subset ignorability is satis"ed, which in turn implies that
the strati"ed di#erence-in-means !n is a consistent estimator of the
sateM , by Theorem 1.

Proposition B.1. There exists a structural causal model (SCM) com-
patible with the causal DAG in Figure B.1 which violates mediator
ignorability but satis"es subset ignorability.

Proof. We start by explicitly constructing an SCM that is (faithfully)
compatible with the DAG in Figure B.1. Our SCM has the following
independent exogenous variables:

UZ ∼ Unif({w, b}),
UQ ∼ Unif({1, 2, 3, 4}),
UM ∼ Unif((0, 1)),
UY ∼ Unif((0, 1)),

where UZ and UQ are uniformly distributed over the speci"ed discrete
sets, and UM and UY are uniform over the unit interval. Now, the
structural equations are given by

fZ(uz) = uz ,
fQ(uq) = uq,

fM(z, q, um) = 1

(
um ≤ (1 + 1(z = b))

· 1(q = 1) + 1(z = b ∧ q = 3) + 1(z = w ∧ q = 2)

2

)
,

fY (z, m, q, uy) = m · 1
(

uy ≤ (1 + 1(z = b)) · 1(q = 1)

2

)
,

where1 denotes the indicator function and ∧ denotes conjunction (i.e.,
the and operator). For avoidance of doubt, Z = fZ(UZ), Q = fQ(UQ),
M = fM(Z, Q, UM), and Y = fY (Z, M, Q, UY ). Further, the potential
arrest outcomes are given by M(z) = fM(z, Q, UM), and the bivariate
potential charge outcomes are given by Y(z, m) = fY (z, m, Q, UY ).

Figure B.1. A causal DAG considered by Knox, Lowe, and Mummolo In the context
of our charging example, Z indicates race, M indicates arrest decisions, Y indicates
charging decisions, and Q is an unobserved confounder. Even when one restricts to
distributions compatible with this DAG, the Knox, Lowe, and Mummolo conditions
are not necessary to nonparametrically identify the SATEM from data on second-
stage decisions.

B.1. Mediator ignorability is violated

First, note that Z ⊥⊥ {Y(b, 1), M(w), M(b)}, because Z is a function
of UZ , and {Y(b, 1), M(w), M(b)} are functions of UY , UQ, and UM ,
which are jointly independent of UZ . Now, applying this fact and
conditioning on Q, we have that,

Pr(Y(b, 1) = 1 | M(w) = mw, M(b) = 1, Z = z)
= Pr(Y(b, 1) = 1 | M(w) = mw, M(b) = 1)

=
4∑

q=1
Pr(Y(b, 1) = 1 | M(w) = mw, M(b) = 1, Q = q)

· Pr(Q = q | M(w) = mw, M(b) = 1)

=
4∑

q=1
Pr(fY (b, 1, q, UY ) = 1 | M(w) = mw, M(b) = 1, Q = q)

· Pr(Q = q | M(w) = mw, M(b) = 1).

Next, observe that fY (b, 1, q, UY ) = 1(q = 1), and so

Pr(Y(b, 1) = 1 | M(w) = mw, M(b) = 1, Z = z)
= Pr(Q = 1 | M(w) = mw, M(b) = 1)

= Pr(M(w) = mw, M(b) = 1 | Q = 1) · Pr(Q = 1)
∑4

q=1 Pr(M(w) = mw, M(b) = 1 | Q = q) · Pr(Q = q)

= Pr(M(w) = mw, M(b) = 1 | Q = 1)
∑4

q=1 Pr(M(w) = mw, M(b) = 1 | Q = q)
. (B.19)

The second equality above follows from Bayes’ rule, and the third
follows from the fact that Pr(Q = q) = 1/4.

Finally, we compute Pr(M(w) = mw, M(b) = 1 | Q = q). Note that

M(w) = fM(w, Q, UM)

= 1

(
UM ≤ 1(Q = 1) + 1(Q = 2)

2

)

=
{

1(UM ≤ 1/2) Q ∈ {1, 2},
0 otherwise. (B.20)

Likewise,

M(b) = fM(b, Q, UM)

= 1(UM ≤ (1(Q = 1) + 1(Q = 3)))

=
{

1 Q ∈ {1, 3},
0 otherwise. (B.21)

As a result,

Pr(M(w) = mw, M(b) = 1 | Q = q) =






1/2 q = 1,
1 q = 3 ∧ mw = 0,
0 otherwise.

Thus, by Equation (B.19),

Pr(Y(b, 1) = 1 | M(w) = 1, M(b) = 1, Z = z) = 1,

while

Pr(Y(b, 1) = 1 | M(w) = 0, M(b) = 1, Z = z) = 1
3

.

Therefore, Y(b, 1) )⊥⊥ M(w) | M(b) = 1, Z = z, meaning that mediator
ignorability does not hold.
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B.2. Subset ignorability holds

Similar to the above, we have that

Y(b, 1) = fY (b, 1, Q, UY )

= 1(UY ≤ 1(Q = 1))

=
{

1 Q = 1,
0 otherwise, (B.22)

and

Y(w, 1) = fY (w, 1, Q, UY )

= 1(UY ≤ 1(Q = 1)/2)

=
{

1(UY ≤ 1/2) Q = 1,
0 otherwise. (B.23)

Now, as before, Z ⊥⊥ {Q, M(w), M(b)}, since Z is a function of UZ ,
and {Q, M(w), M(b)} are functions of UQ and UM , which are jointly
independent of UZ . Consequently,

Pr(Q = 1 | M = 1, Z = z) = Pr(Q = 1 | M(z) = 1, Z = z)
= Pr(Q = 1 | M(z) = 1)

= Pr(M(z) = 1 | Q = 1) · Pr(Q = 1)
∑4

q=1 Pr(M(z) = 1 | Q = q) · Pr(Q = q)

= 1
2

, (B.24)

where the last equality follows from Equations (B.20) and (B.21),
together with the fact that Pr(Q = q) = 1/4, and that UM ⊥⊥ Q.

Finally, conditioning on Q, we have

Pr(Y(b, 1) = 1 | M = 1, Z = z)

=
4∑

q=1
Pr(Y(b, 1) = 1 | M = 1, Z = z, Q = q)

· Pr(Q = q | M = 1, Z = z)
= Pr(Q = 1 | M = 1, Z = z)

= 1
2

,

where the second equality follows from Equation (B.22), and the third
from Equation (B.24). Similarly,

Pr(Y(w, 1) = 1 | M = 1, Z = z)

=
4∑

q=1
Pr(Y(w, 1) = 1 | M = 1, Z = z, Q = q)

· Pr(Q = q | M = 1, Z = z)
= Pr(UY ≤ 1/2 | M = 1, Z = z, Q = 1) · Pr(Q = 1 | M = 1, Z = z)
= Pr(UY ≤ 1/2) · Pr(Q = 1 | M = 1, Z = z)

= 1
4

,

where the second equality follows from Equation (B.23), the third from
the fact that UY ⊥⊥ {M, Z, Q}, and the fourth from Equation (B.24).
Therefore, Pr(Y(b, 1) = y | M = 1, Z = b) = Pr(Y(b, 1) | M = 1, Z =
w) and similarly for Y(w, 1). In particular, this means that Y(z, 1) ⊥⊥
Z | M = 1, and so subset ignorability holds.

Appendix C: Extending Theorem 1 to Allow for
Continuous Covariates

Theorem 1 in the main text shows that subset ignorability—together
with overlap—implies the sateM is nonparametrically identi"ed,
where, for simplicity, we proved the result for discrete covariates X.
We now extend that result to allow for continuous covariates. At a
conceptual level, the extension is straightforward: we "rst condition
on X, then appeal to subset ignorability to condition on Z, and, "nally,
use consistency to replace potential outcomes by their observed values.
In the general case, however, typically Pr(X = x) = 0, and so one
must take care to de"ne expressions that nominally condition on these
probability-zero events.

Recall that in the discrete case, the primary conditional expecta-
tions, treated as functions of z and x, are of the form

E[Y | Z = z, X = x, M = 1]

=
∑

y
y Pr(Y = y, Z = z, X = x | M = 1)

Pr(Z = z, X = x | M = 1)

=
∑

y
y Pr(Y = y, Z = z, X = x | M = 1)

Pr(Z = z | X = x, M = 1) Pr(X = x | M = 1)
. (C.25)

Overlap ensures that the denominator in (C.25) is nonzero, and,
accordingly, that the conditional expectation is well-de"ned. In the
continuous case, to address conditioning on probability-zero events,
conditional probabilities are de"ned as random variables rather
than simple numeric quantities (cf. Billingsley 2008). Further, if the
random variables Pr(Z = z | X, M = 1) > 0 a.s. for z ∈ {w, b}—
a condition that we call generalized overlap—then the expression
E[Y | Z = z, X = x, M = 1] is a well-de"ned function of z and x,
as in the discrete case, up to a set of measure zero with respect to the
pushforward measure µX | M=1 for each "xed z.18,19

We now state and prove the extension of Theorem 1, with the under-
standing that the conditional probabilities and expectations below are
de"ned according to the usual measure-theoretic conventions.

Theorem C.1. Suppose Y(z, 1), Z, M, and X satisfy subset ignorability,
and that generalized overlap holds—that is, for z ∈ {b, w}, Pr(Z =
z | X, M = 1) > 0 a.s. Then, the sateM equals

∫

X
E[Y | Z = b, X = x, M = 1] dFX | M=1

−
∫

X
E[Y | Z = w, X = x, M = 1] dFX | M=1,

(C.26)

where X denotes the range of X and dFX | M=1 denotes integration over
X with respect to the pushforward measure µX | M=1.

Proof. By conditioning on X, we have,

sateM = E[Y(b, 1) − Y(w, 1) | M = 1]

=
∫

X
E[Y(b, 1) − Y(w, 1) | X = x, M = 1] dFX | M=1

=
∫

X
E[Y(b, 1) | X = x, M = 1]

18The pushforward measure µX | M=1 is the measure on X —the range of X—
given by µX | M=1[A] = Pr(X ∈ A | M = 1) for measurable A ⊆ X .

19To see this, "rst note that, in general, E[Y | Z = z, X = x, M = 1] is uniquely
de"ned up to a set of measure zero with respect to the pushforward
measure µZ,X | M=1. Now, for "xed z, suppose, toward a contradiction, that
f1(x) and f2(x) are two versions of E[Y | Z = z, X = x, M = 1] that di!er
on a set A such that Pr(X ∈ A | M = 1) > 0. Then, by the generalized
overlap condition, Pr(Z = z, X ∈ A | M = 1) =

∫
A Pr(Z = z | X = x, M =

1) dFX | M=1 > 0, contradicting the fact that f1(x) )= f2(x) only on a null set
with respect to the pushforward measure µZ,X | M=1.
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Figure D.2. Breakdown of age by gender of individuals arrested for a felony o"ense between 2013 and 2019 in a major U.S. county, as analyzed in Section 4.

− E[Y(w, 1) | X = x, M = 1] dFX | M=1. (C.27)
Now, subset ignorability gives that, a.s.,

E[Y(z, 1) | X = x, M = 1] = E[Y(z, 1) | X = x, Z = z, M = 1],
(C.28)

where generalized overlap ensures that the right-hand side of Equa-
tion (C.28) is well-de"ned up to a set of measure zero with respect
to dFX | M=1. Substituting this expression into Equation (C.27), and
then appealing to consistency to replace potential outcomes with their
observed values, we have

sateM =
∫

X
E[Y(b, 1) | X = x, Z = b, M = 1]

− E[Y(w, 1) | X = x, Z = w, M = 1] dFX | M=1

=
∫

X
E[Y(Z, M) | X = x, Z = b, M = 1]

− E[Y(Z, M) | X = x, Z = w, M = 1] dFX | M=1

=
∫

X
E[Y | X = x, Z = b, M = 1]

− E[Y | X = x, Z = w, M = 1] dFX | M=1.

All of the quantities in Equation (C.26) (i.e., the distribution of X
and the conditional expectations) are functions of observables, estab-
lishing that the sateM is identi"ed by data on second-stage deci-
sions. One may adopt a variety of approaches to estimate the terms
in Equation (C.26), including model-based strategies, as we do in
Section 4. One may also adopt nonparametric estimation strategies,
wherein continuous covariates are appropriately binned into discrete
sets. For further treatment of these issues, see, for example, Gelman
et al. (2013), Friedman, Hastie, and Tibshirani (2001), and Tsybakov
(2008).

Appendix D: Summary Statistics of Prosecution
Dataset

We present summary statistics, disaggregated by demographic group,
of the dataset used to conduct the empirical analysis of prosecutorial
charging decisions in Section 4.
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Table D.1. Breakdown of charges, prior arrests, and prior convictions, and weapons
involvement among individuals arrested for a felony o"ense between 2013 and
2019 in a major U.S. county, as analyzed in Section 4.

Male Female Black White

Charge arson 50 218 79 124
assault 2062 9160 4131 3662
burglary 664 3334 1762 1535
burglary (auto) 125 1216 737 338
driving under the in$uence 26 90 17 50
drug-related o"ense 736 5643 2815 1881
forcible rape 3 112 49 26
forgery 60 187 103 84
hit-and-run 10 42 18 17
kidnapping 4 24 12 1
manslaughter (vehicular) 2 8 4 3
motor vehicle theft 83 323 161 141
other felony o"ense 287 2115 877 910
other sex o"ense 8 180 85 54
robbery 458 2186 1536 589
theft 877 3385 1723 1539
weapons o"ense 80 882 513 218
willful homicide 53 178 65 60

Prior arrests 0 3192 13,491 5881 5682
1 1005 5486 2972 1977
2 553 3315 1929 1134
3 321 2199 1215 786
4 191 1558 895 540
5 116 1066 591 364
6 78 697 381 242
7 40 469 248 157
8 29 316 180 103
9 18 204 111 84
10+ 45 482 283 163

Prior convictions 0 4451 20,775 9937 8290
1 748 5221 2961 1773
2 278 2055 1111 730
3 78 766 429 261
4 23 312 171 116
5+ 10 154 77 62

Weapons no weapon involved 4442 24,932 12,810 9434
weapon involved 1146 4351 1876 1798

Note: Note that only Black and non-Hispanic white individuals are analyzed in our
race-based analysis, so within-row sums di"er between race and gender.
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