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C O M P U T E R  S C I E N C E

Risk scores, label bias, and everything but the kitchen sink
Michael Zanger- Tishler1*, Julian Nyarko2, Sharad Goel3

In designing risk assessment algorithms, many scholars promote a “kitchen sink” approach, reasoning that more 
information yields more accurate predictions. We show, however, that this rationale often fails when algorithms 
are trained to predict a proxy of the true outcome, for instance, predicting arrest as a proxy for criminal behavior. 
With this “label bias,” one should exclude a feature if its correlation with the proxy and its correlation with the true 
outcome have opposite signs, conditional on the other model features. This criterion is often satisfied when a 
feature is weakly correlated with the true outcome, and, additionally, that feature and the true outcome are both 
direct causes of the proxy outcome. For example, criminal behavior and geography may be weakly correlated and, 
due to patterns of police deployment, direct causes of one’s arrest record—suggesting that excluding geography 
in criminal risk assessment will weaken an algorithm’s performance in predicting arrest but will improve its capac-
ity to predict actual crime.

INTRODUCTION
Risk assessments are central to the allocation of resources and the im-
position of sanctions. In medicine, estimated health risks guide treat-
ment decisions (1); in banking, default risk determines whether an 
applicant should be granted a loan (2); in education, the risk of non-
completion is an important factor for college admissions decisions 
(3); and in criminal justice, recidivism risk helps judges decide wheth-
er to detain or release a defendant while their cases proceed (4–6). 
Increasingly, the risk of these adverse events is estimated with the help 
of statistical algorithms. In training these algorithms, there is a widely 
shared view that the investigator should use as much data as is avail-
able to them (7–9). This view rests on the intuition that more informa-
tion leads to predictions that are at least as good as those with less 
information: If the added data are informative in estimating risk, then 
they will improve the performance of the algorithm, and if the added 
data do not contain a helpful signal, then they will be discarded with-
out hurting performance. Proponents of this view stress that feature 
importance in the predictive context neither requires nor implies a 
causal link between algorithmic inputs and predicted outcomes (8). 
Without the constraints of rigorous causal identification, it is argued 
that investigators can remain entirely atheoretical and simply hand all 
available data over to the predictive algorithm.

Here, we show how “label bias,” present in virtually all real- world 
scenarios in which algorithms are deployed today, can invalidate this 
common rationale. Label bias occurs when the outcome of interest is 
not observed directly but is instead observed with systematic mea-
surement error. For instance, although criminal risk assessment tools 
seek to estimate the risk of future criminal behavior, we typically only 
observe whether individuals are arrested or convicted of a crime. Sim-
ilarly, tools used to estimate health risk often seek to divert resources 
to the patients with the most serious medical needs, but our observa-
tions are often limited to medical expenditures. The inclusion of ad-
ditional features will in general improve an algorithm’s prediction of 
the proxy label (e.g., arrest or medical expenditures), but in the pres-
ence of label bias, the additional information can decrease the quality 
of predictions for the true label (e.g, criminal behavior or medical 

need). Below, we formally demonstrate and empirically illustrate 
conditions under which the inclusion of additional features hurts the 
predictive performance on the true outcome of interest. Because re-
searchers rarely have access to the true label, whether or not to include 
a particular feature often rests on unverifiable assumptions about the 
relationships that gave rise to the proxy label. The findings highlight 
that most predictive contexts require investigators to spend substan-
tial time and care in developing a theoretical model of the underlying 
data generating process. The importance of creating such a model is 
often seen as something that is the exclusive domain of causal infer-
ence, but we highlight here that it is also important in predictive 
contexts.

Our study contributes to a burgeoning literature examining the 
use of algorithmic risk prediction in a variety of domains. These al-
gorithms are frequently used to predict the risk of adverse events 
such as future criminal offending and failure to appear in court (10), 
the risk of child abuse (11–13), money laundering (14), students lag-
ging behind in their learning (15), and the risk of nonpayment of 
loans (2). They are also used in  situations where organizations or 
governments are deciding how to allocate scarce resources such as 
providing building permits (16), assigning students to schools (17), 
assigning high- risk patients to programs providing them more care 
(18), and determining who will receive kidney transplants (19). Fur-
ther, corporations are currently using these tools to inform deci-
sions about who receives information about housing advertisements 
(20) and employment opportunities (21). Algorithmic risk assess-
ment tools can be better than humans at determining risk (22). 
However, scholars continue to critique these algorithms and study 
whether and under what conditions they can fairly and effectively be 
deployed in society (23–26).

In addition, our analysis builds on and contributes to a substantial 
body of literature examining the impact of label bias in statistical anal-
yses. Prior work in the social sciences has long focused on the impor-
tance of measurement error for causal studies. Within this literature, a 
main focus has traditionally been on examining the importance of 
measurement error in the independent variable, which can, at best, 
attenuate the causal estimates [pp. 320–323 in (27)] and, at worst, bias 
the coefficients in ways that are difficult to predict (28). Less attention 
has been given to label bias (i.e., measurement error in the dependent 
variable), perhaps because it is often assumed that proxy labels differ 
from the true labels by random noise, in which case one can still 
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obtain unbiased causal estimates [pp. 318–320 in (27)]. Existing re-
search, however, suggests that there is a nonrandom relationship be-
tween the true and proxy labels across a variety of contexts, such as in 
the case of offending (i.e., actually committing a crime) and arrest 
(29). More recent contributions have considered the impact of such 
systematic errors in the labels. For example, Knox et al. (30) examine 
the potential for biases to arise in causal estimates when latent con-
cepts that cannot be directly measured—such as political “ideology” 
and “democracy”—are approximated by proxy variables constructed 
from statistical models. Complementary work in computer science 
has examined the impact of label bias in a predictive setting. For in-
stance, although predictive models may perform well on the proxy 
label, research has shown that they are not guaranteed to be accurate 
on the true label if the measurement error between the true and proxy 
label is non- random (31). Similarly, label bias can also reduce the fair-
ness of these algorithms on the true label (32). When feasible, training 
predictions on the true label rather than a proxy has been shown to 
reduce racial inequities in algorithmic prediction and increase perfor-
mance (18, 33, 34).

We build on these contributions by explicitly examining how the 
performance decrease from label bias interacts with the inclusion of 
additional input features into the model. To establish our results, we 
begin, in Methods, by deriving analytic conditions for when exclud-
ing features in a model trained to predict a proxy label is guaranteed 
to improve predictions of the true outcome of interest. We demon-
strate and build intuition for these analytic results using a stylized ex-
ample of estimating recidivism risk in the presence of label bias, where 
reoffense is the true label of interest and rearrest is the observed proxy. 
Then, in Results, we turn to two case studies. First, we consider par-
tially synthetic recidivism data with real rearrest outcomes (the proxy 
label) and simulated reoffense outcomes (the true label). This setting 
resembles one that many researchers face in practice, where data on 
the true label are often prohibitively difficult or impossible to obtain. 
We show how different assumptions about how the true label relates 
to the observed proxy affect decisions about what features to include 
in the risk assessment model. Second, we consider a dataset from the 

health sciences. In targeting patients for high- risk care management 
programs, we rely on data by Obermeyer et al. (18), which contain, 
among other items, information on both the true label (health care 
need) and a proxy (health care spending). Using this dataset, we esti-
mate the welfare costs of using a kitchen- sink predictive model in-
stead of more judiciously selecting a model that accounts for label 
bias. We conclude in Discussion with a recap of our findings and sug-
gest potential paths forward.

METHODS
A statistical condition for excluding features
To build intuition for how label bias impacts the choice of features 
in predictive models, we start with a simplified motivating example 
from the criminal justice context. In the United States, after an ar-
rest, a judge will often decide whether or not to detain the arrested 
individual based on their estimated risk to public safety. In practice, 
this risk is commonly estimated using statistical risk assessments. 
The underlying risk models are trained using information about 
future arrests and convictions. However, arrests and convictions are 
not direct measures of public safety risks. Instead, they merely 
act as proxies, making these risk assessment tools susceptible to 
label bias.

In Fig. 1, we sketch the data- generating process for a stylized, 
linear structural equation model (SEM) (35) of arrests and behav-
ior, where we treat arrests as the observed proxy for unobserved 
behavior, our true outcome of interest. The model produces syn-
thetic data on individual- level behavior (B0 and B1) and arrest (A0 
and A1) outcomes at two time periods (t = 0 and t = 1), as well as 
the neighborhood (Z) in which the individual resides. Arrests de-
pend both on behavior and on neighborhood, reflecting the fact 
that people who engage in the same behavior may be arrested at 
different rates depending on where they live. For example, Beckett et al. 
(36) found that the geographic concentration of police resources 
in Seattle led to higher arrest rates for Black individuals delivering 
drugs compared to white individuals delivering drugs—where the 

Fig. 1. The data- generating process for our stylized example of criminal behavior (true label) and arrest (proxy label). Observed variables are highlighted in 
orange.
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true racial distribution of those delivering drugs was estimated 
from survey data and ethnographic observations. Similarly, Cai et al. 
(37) found that the issuance of speeding tickets varied across neigh-
borhoods even after adjusting for the true underlying incidence of 
speeding, as estimated by the movement of mobile phones.

In this SEM, all of the variables are normally distributed, with a 
mean of 0 and a variance of 1. We can thus interpret their values as 
representing the extent to which individuals differ from the popula-
tion averages. In the case of neighborhood (Z), we can think of its 
value as denoting the level of police enforcement in that area. Fur-
ther details about the model are provided in the Supplementary 
Materials.

Using synthetic data generated with this SEM, we train a “com-
plex,” kitchen- sink model to predict arrests at time t = 1 (A1) 
based on arrests at time t = 0 (A0) and neighborhood (Z). The 
more parsimonious, “simple” model bases its predictions only on 
arrests at time t = 0, omitting neighborhood. We now examine 
how the performance of the complex and simple models vary for 
different values of β, the parameter that describes the relationship 
between neighborhood and behavior, holding the other parame-
ters fixed. For this simulation, we set α = γ = δ = 0.4, although the 
general pattern is largely invariant to this choice, as we describe in 
more detail below.

Across values of β, the left- hand panel of Fig. 2 shows that the 
complex model outperforms the simple model—in terms of root 
mean squared error (RMSE)—when evaluated on the proxy la-
bel. As expected, including more information reduces error 
when evaluated on the label used to train the models, a pattern 
that has traditionally motivated the inclusion of more features in 
predictive models. However, moving to the right- hand panel of 
Fig.  2, we see that the simple model outperforms the complex 
model on the true label for some values of β. In particular, the 
simple model outperforms the complex one for small values of 

β, corresponding to a weak relationship between neighborhood 
and behavior.

Our SEM illustrates a scenario in which simple models outper-
form more complex models due to the presence of label bias. To 
understand this result, imagine two individuals, both of whom 
have the same prior arrest record, but with only one of them living 
in a heavily policed neighborhood. Further assume that where one 
lives has little impact on criminal behavior (corresponding to 
small β), but that heavier policing increases the chance of being 
arrested for an offense. In this case, we can infer that the individu-
al living in the heavily policed neighborhood engaged in past 
criminal activity less frequently than the individual living in the 
less heavily policed neighborhood. This is because fewer actual of-
fenses are required to build a given arrest record in areas of high 
enforcement. Extrapolating from their past behavior, we would ac-
cordingly expect the individual in the heavily policed area to be 
less likely to engage in future criminal behavior. Thus, using infor-
mation about one’s neighborhood to predict future arrests (the 
proxy label) correctly tells us that the individual living in the heav-
ily policed neighborhood is more likely to be rearrested, but it in-
correctly suggests that individual is also more likely to engage in 
future criminal behavior (the true label). So, when predicting ar-
rests as a proxy for behavior, it is better in this case to exclude in-
formation on one’s neighborhood.

The SEM depicts a specific data- generating process, but the 
phenomenon we identify is generalizable. Theorem 1 and Corol-
lary 1 below establish formal conditions under which this pattern 
is guaranteed to occur. Proofs for both results are straightforward, 
and are provided in the Supplementary Materials.

Theorem 1. Suppose Y and Y′ are two arbitrary random vari-
ables with finite variance, where Y is the “true” outcome of interest 
and Y′ is a proxy. For a random vector X = (X1, …, Xk) and a ran-
dom vector Z = (Z1, …, Z𝓁), consider the estimators

Proxy label True label
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Fig. 2. Performance of simple and complex models trained to predict a proxy label, when evaluated on the proxy label (left) and the true label (right) for a range 
of β values. Whereas the complex model outperforms the simple model on the proxy label, the simple model outperforms the complex model on the true label for certain 
values of β. RMSe, root mean squared error.
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where ŶX,Z is the “complex” estimator that uses all available features 
and ŶX is the simple estimator that omits Z. Then,

In particular,

with strict inequality if ŶX,Z ≠ ŶX.
In the setting of Theorem 1, one seeks to estimate a true outcome 

of interest Y and is choosing between two different estimators de-
signed to predict the proxy label Y′. The first, complex estimator 
( ̂YX,Z ) uses both X and Z to predict Y′, whereas the second ( ̂YX ) uses 
only X. The theorem shows that if, conditional on X, the true label (Y) 
is negatively correlated with the complex estimator ( ̂YX,Z ), then the 
simple model generally outperforms the complex estimator—in terms 
of mean squared error—on the true outcome of interest. Intuitively, 
this result holds because the condition of the theorem means that the 
complex estimator goes in the “wrong” direction relative to the true 
outcome of interest.

If, alternatively, the true and proxy labels differ only by additive, 
independent noise, then Proposition 1 in the Supplementary Materi-
als shows that including more information when predicting the proxy 
label will in general improve predictive performance on the true label. 
In the absence of systematic measurement error—including the case 
where there is no measurement error—the proposition confirms the 
conventional wisdom that more information is better.

To build further insight into this result, we consider the case where 
𝓁 = 1 (i.e., Z is a single random variable) and the complex estimator 
ŶX,Z is linear in Z. In this setting, Corollary 1 establishes a simpler 
condition under which performance increases by omitting informa-
tion. Specifically, if, conditional on X, Z is positively correlated with 
true label Y but negatively correlated with the proxy label Y′ (or vice 
versa), then omitting Z when predicting the proxy label will in gen-
eral improve performance on the true outcome of interest.

Corollary 1. Consider the setting of Theorem 1 with 𝓁 = 1. Sup-
pose additionally that Z has finite variance and ŶX,Z is linear in Z, 
i.e., ŶX,Z = f (X) + cZ for some function f and a constant c ∈ ℝ. If 
ŶX,Z ≠ ŶX and either �[Cov(Y ,Z∣X)] = 0 or

then, �
[

(

�Y
X
−Y

)2
]

< �

[

(

�Y
X,Z−Y

)2
]

.

The linearity assumption of Corollary 1 holds in a variety of set-
tings. In particular, as described in the Supplementary Materials, it 
holds when Y′, X, and Z are jointly multivariate normal, as is the case 
in our SEM above. To apply the corollary, one needs information on 
the correlations of Y and Z and of Y′ and Z, conditional on X. The 
former involves directly observed quantities—the proxy label and the 
potential input features—and so, in practice, can be computed from 
the data. For our stylized SEM, we show in the Supplementary Materi-
als that this correlation is positive for all (nondegenerate) parameter 
choices, meaning that neighborhood (Z) is positively correlated with 
future arrests (A1), conditional on past arrests (A0). The second con-
ditional correlation we must consider when applying Corollary 1—
the correlation between Y and Z, conditional on X—is not typically 
directly observed, as it depends on the true label Y. Understanding its 
sign thus involves assumptions about how the true label is related to 
the input features Z and X. For our SEM, we show in the Supplemen-
tary Materials that this correlation is negative for small values of β. 
That is, when β is small, neighborhood (Z) and future behavior (B1) 
are negatively correlated conditional on past arrests (A0). Intuitively, 
this is because A0 is a collider—a variable caused by two other variables—
and so when we fix its value, increasing Z requires decreasing B0, 
which, in turn, decreases B1. Thus, for small values of β, omitting 
neighborhood when predicting the proxy label improves perfor-
mance on the true label, as shown in Fig. 3.

RESULTS
Case studies
To better understand the practical implications of our results, we now 
turn to two real- world datasets. The first allows us to further consider 
criminal risk assessments, adding additional realism to our stylized 
SEM above; the second dataset comes from the medical domain, 
where the goal of the risk assessment we consider is to identify pa-
tients with complex health care needs.

Criminal risk assessments
Continuing with our running example studying arrest and criminal 
behavior, we use data on individuals from a major U.S. county who 
were arrested for a felony offense between 2013 and 2019. For simplic-
ity, we limit the sample to the 25,918 cases where the individuals’ race 
was identified as either Black or non- Hispanic white. The dataset in-
cludes further details on each case, including information on the 
charges, the location, date and time of the incident, and the criminal 
history of the arrested individual. In addition, the dataset contains in-
formation on future rearrests, which we use as our proxy label for fu-
ture offenses. Using these data, we fit simple and complex models 
trained on the proxy label (future arrests). We then examine model 
performance on the true label (future criminal offenses), which we 
simulate, as described below, because it is not directly observed. Our 
complex model includes three features: the age of the arrested indi-
vidual, the number of times the individual was previously arrested, 
and whether or not the arrest occurred in a “high policing” area (i.e., 
a police district accounting for disproportionately high numbers of 
arrests). Our simple model includes age and number of past arrests, 
but not location information—similar to many commonly used crim-
inal risk assessment tools.

This example mirrors many instances of label bias in the real 
world, as it is difficult—and perhaps impossible—to directly estimate 
the risk of true offending (38). This is partly because criminal 
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Ŷ
X,Z−Y

)2
]

−�

[

(

Ŷ
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behavior that is not reported to the police will not be included in ad-
ministrative records. We thus simulate offending outcomes under a 
range of data- generating processes and then examine how assump-
tions about criminal behavior affect model performance after includ-
ing or omitting location information. In particular, we parameterize 
these data- generating processes in terms of a fixed value ρ ∈ ℝ de-
scribing the relationship between neighborhood and criminal behav-
ior, conditional on age and past arrests. We then assume that each 
individual in our dataset commits a future offense with the following 
probability

where B1 indicates future criminal behavior (our true label), Xage is the 
arrested individual’s age, A0 is the number of times they were previ-
ously arrested, and Z indicates whether the arrest took place in a high- 
policing area. The intercept and the coefficients for A0 and Xage were 
selected to approximate the coefficients from a regression of future 
arrests on age and past arrests in our data.

On the basis of the data- generating process described above, we 
now evaluate the ability of our simple and complex risk assessment 
models to predict the synthetic true label, future criminal behavior. 
We evaluate model performance in terms of the area under the re-
ceiver operating characteristic curve (AUC), as the outcome is binary. 
AUC is a common measure of performance in the machine learning 
community when considering binary outcomes. Given a random in-
dividual who engaged in future criminal activity and a random indi-
vidual who did not, the AUC of a risk assessment model is the 
probability that the model correctly identifies the individual in the 
pair who engaged in criminal activity. Our formal theoretical results 

are stated in terms of RMSE, but this example and our subsequent 
example show that the general pattern and intuition extend to other 
popular evaluation metrics.

Figure 3 shows that the simple model outperforms the complex 
model on the true label when ρ is negative, and the complex model 
outperforms the simple model when ρ is sufficiently positive. Given 
two arrested individuals who are the same age and have the same 
number of past arrests, negative values of ρ indicate that the individu-
al who was arrested in the high- policing area is the less likely of the 
pair to engage in future criminal behavior. Accordingly, to the extent 
that one believes the hypothesized data- generating process with nega-
tive ρ is a sufficiently accurate description of criminal behavior, it is 
better to exclude neighborhood information when training risk as-
sessment tools on the proxy label future arrests.

Identifying high- needs patients
We continue by applying our results to a well- known case of label bias 
in the literature, that of a commercial risk assessment tool relied on by 
health systems to target patients for “high- risk care management” 
programs (18). These programs seek to enroll patients with complex 
medical needs and subsequently provide them with a higher level of 
care. Because these programs are capacity constrained, the role of sta-
tistical risk assessments in this case is to accurately identify patients 
who would benefit the most from the additional care. In practice, the 
risk assessment algorithms are often designed to predict future medi-
cal expenditures, a proxy for medical need as the true outcome of in-
terest. Analyzing these algorithms, Obermeyer et  al. (18) conclude 
that, due to label bias, Black patients are less likely to be enrolled in the 
program than white patients with the same level of medical need. This 
is because unequal access to health care means that white individuals 
are more likely to seek medical treatment—and accordingly incur 
higher medical costs—than equally sick racial minorities.

Obermeyer et al. (18) highlight the importance of appropriately 
selecting the target of prediction and illustrate the accuracy and eq-
uity gains one can achieve by switching from predicting expenditures 
to a more direct measure of medical need. Here, we revisit the prob-
lem and investigate how the choice of risk factors used to identify pa-
tients affects enrollment decisions. To do so, we start with the data 
released by Obermeyer et al. (18), which include detailed information 
on patient demographics (sex, race, and age), current and future 
health, and past and future medical expenditures. To preserve patient 
confidentiality, variables in the released dataset were synthetically 
generated in a manner that ensures their conditional distributions ap-
proximate those in the original, unreleased dataset. We then train 
simple and complex models on the proxy label, future medical costs. 
Our complex model includes all information available at the time of 
the enrollment decision (i.e., patient demographics, current health, 
and past medical expenditures); our simple model includes only cur-
rent health, excluding past medical costs and demographic variables. 
In this case, the equivalent of our parallel “neighborhood” variables 
are past expenditure and demographics variables. In the end, the 
complex model includes 150 predictors, and the simple model in-
cludes 128 predictors.

Next, we evaluate both models on their ability to predict whether 
a patient, in the subsequent year, is found to suffer from at least three 
chronic diseases—a measure of future health need identified by 
Obermeyer et al. (18). The left- hand panel of Fig. 4 shows the num-
ber of high- needs patients enrolled under the simple and complex 
models at different enrollment capacities, where the patients with 

Pr(B1 = 1) = logit−1
(

− 1 −
1

100
Xage +

1

2
A0 + ρZ

)

68%

70%

72%

74%

−2 −1 0 1 2

AU
C

Model

Simple

Complex

Fig. 3. Performance of simple (age and past arrests) and complex (age, past 
arrests, and neighborhood) models trained to predict future arrests (the 
proxy label), evaluated on future criminal behavior (the true label). Because 
the future criminal behavior is not directly observable, the plot shows results for 
synthetic outcomes generated under a range of data- generating processes param-
eterized by ρ, the hypothesized relationship between neighborhood and future 
criminal behavior, conditional on age, and past arrests.

D
ow

nloaded from
 https://w

w
w

.science.org on June 22, 2024



Zanger-Tishler et al., Sci. Adv. 10, eadi8411 (2024)     29 March 2024

S c i e n c e  A d v A n c e S  |  R e S e A R c h  A R T i c l e

6 of 7

highest estimated risk under the respective models are enrolled in 
the program. At each capacity level, the simple model outperforms 
the complex model in identifying more high- needs patients. In addi-
tion, as shown in the right- hand panel of Fig. 4, the simple model 
enrolls more Black patients than the complex model at every capacity 
level. This pattern stems from the simple model prioritizing patients 
with high expected medical needs over patients with high expected 
medical expenditures—the latter population being disproportion-
ately white. Thus, if one only has access to a proxy label, then system-
atically excluding input features in a risk assessment tool can improve 
both the accuracy and equity of the instrument.

DISCUSSION
In building predictive models, the traditional guidance is to include 
all available information to maximize performance. However, as we 
have shown, a more judicious selection of features can lead to better 
model performance in the presence of label bias. Because the true la-
bel of interest is often not readily available, it raises the question of 
what examiners should and can do to mitigate the negative conse-
quences from using a kitchen- sink model for prediction. The exam-
ples we have discussed highlight several approaches that vary in their 
appropriateness based on data availability and understanding of the 
underlying data- generating process.

Most directly, Obermeyer et al. (18) illustrate how some instanc-
es of label bias can be addressed simply by making a more concen-
trated effort to collect data on the true label of interest. If such an 
effort is generally possible but prohibitively costly, then investigators 
should consider whether the true label of interest can be obtained 
for a smaller subset of the population. This subset, even if it is not 
sufficiently large to train models predicting the true label, might still 
be used to explore how the selection of features affects model per-
formance on the true label. If obtaining the true label is impossible, 
but investigators have access to a wealth of other features, one may 

simulate the true label of interest. In doing so, researchers should 
use their domain- specific knowledge to make reasonable assump-
tions about the relationship between the true label of interest and 
the features in question. We illustrated this process using felony of-
fense data. Investigators need not constrain themselves to one par-
ticular relationship between the true label and the features but can 
instead assess the sensitivity of feature selection to label bias across 
a wide range of plausible assumptions. Last, investigators can make 
additional theoretical assumptions about the data- generating pro-
cess to determine how label bias affects the choice of risk factors in 
a specific application—as we did in our health care example. As 
shown in that example, caution is particularly warranted for features 
that do not appear to be directly risk relevant. These features often 
yield little improvement on the true outcome of interest and raise 
the likelihood that performance may decrease or that their inclusion 
may exacerbate disparities.

More generally, our findings suggest—in contrast to conventional 
wisdom—that one cannot entirely divorce the predictive enterprise 
from theoretical considerations. Instead, a successful deployment of 
predictive tools often rests on the plausibility of the assumptions 
about the underlying processes that give rise to the observed data, 
highlighting the continued utility of domain- specific expertise in the 
predictive context.

Correction (9 April 2024): Shortly after publication, the authors alerted the editorial Office to 
a discrepancy in their title compared to their submitted materials. The originally published 
title, “Risk scores, label bias, everything but the kitchen sink” has been corrected to “Risk scores, 
label bias, and everything but the kitchen sink.” The PdF, Supplementary Materials, and XMl 
have been updated.
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