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A Proof of Theorem 1

To start, note that for any square-integrable random variable Ŷ ,
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Since Y ′ is square-integrable by assumption, so are ŶX,Z and ŶX (by the law of total variance), and so,
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Ŷ 2
X,Z

]
− E

[
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where the penultimate line follows from the fact that E
[
ŶX,Z

]
= E

[
ŶX

]
= E[Y ′], and the last line

follows from the law of total variance. Now,
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where we repeatedly applied the law of iterated expectations, and used the fact that ŶX is measurable
with respect to X in the second equality. Eqs. (1) and (2) together establish Eq. (1) in the theorem
statement.

Eq. (2) in the theorem statement now follows immediately, since
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where the inequality is strict if ŶX,Z ̸= ŶX , establishing the result. □

B Proof of Corollary 1

By Theorem 1, it is sufficient to show that E
[
Cov

(
ŶX,Z , Y | X

)]
≤ 0. We start by noting that

E
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= E [Cov (f(X) + cZ, Y | X)]

= c · E [Cov(Y, Z | X)] .



Now, if E[Cov(Y, Z | X)] = 0, then the result follows immediately. If E[Cov(Y, Z | X)] ̸= 0, then by
the assumption of the theorem,
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Now, by repeatedly applying the law of iterated expectations, we have
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Similarly, we have
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Putting the above together, we get
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Finally, by Eq. (3),
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establishing the result.
□

C Kitchen-Sink Models and Independent Noise

When the proxy label Y ′ and the true label Y simply differ by additive, independent noise, then it is
advantageous to use all available information when constructing risk scores. The following proposition
formalizes this statement.

Proposition 1 In the setting of Theorem 1, suppose Y ′ = Y + S where S ⊥⊥ X,Z. Then
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Proof. First note that

ŶX,Z = E[Y | X,Z] + E[S | X,Z]

= E[Y | X,Z] + E[S],

where the second equality uses the independence assumption. Similarly,

ŶX = E[Y | X] + E[S | X]

= E[Y | X] + E[S].

Now, using the notation YX,Z = E[Y | X,Z] and YX = E[Y | X], we have
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where the third equality follows from the fact that E[YX,Z ] = E[YX ] = E[Y ], and the last equality
follows from the law of iterated expectations. Finally, since
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we have that
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establishing the result.
□

D A Stylized Model of Arrest and Behavior

We formally describe and analyze the SEM depicted in Figure 1. Our model has three independent
exogenous variables UZ = N(0, σ2

Z), UA0 = N(0, σ2
A), and UA1 = N(0, σ2

A). We additionally have two
correlated exogenous variables UB0 = N(0, σ2

B) and UB1 = N(0, σ2
B) that are independent of the first

three, with Cov(UB0 , UB1) = δ ≥ 0. Now, for non-negative constants α, β, and γ, the key variables in
the model are generated by the following linear structural equations:

Z = UZ ,

B0 = βZ + UB0 ,

B1 = βZ + UB1 ,

A0 = αZ + γB0 + UA0 ,

A1 = αZ + γB1 + UA1 .

(4)



We set the variances of the exogenous variables (σ2
Z , σ2

A, and σ2
B) in a manner that ensures that the

remaining variables (Z, B0, B1, A0, and A1) are standardized, meaning they have mean 0 and variance
1—we show how to do this below. We can thus interpret their values as representing the extent to which
individuals differ from the population averages. In the case of neighborhood (Z), we can think of its
value as denoting the level of police enforcement in an area.

To start, we set σ2
Z = 1, which ensures Var(Z) = 1. Now, since Z ⊥⊥ UB0 , we have that Var(B0) =

β2 + σ2
B . Consequently, setting σ2

B = 1− β2 ensures that Var(B0) = 1 (and, similarly, that Var(B1) =
1). Finally, as above, Var(A0) = α2 + γ2 + σ2

A + 2αγCov(Z,B0). One especially nice aspect of linear
graphical models is that the covariance between any two variables can be immediately computed from
the edge weights via the the Wright rules (35, 39). Specifically, when the nodes are standardized to have
variance 1, then the covariance between any two variables in the graph is the sum, over all d-connected
paths between the variables, of the product of the edge weights along the path. A path is d-connected if
it does not pass through any colliders (i.e., nodes with head-to-head arrows along the path). To compute
Cov(Z,B0), observe that the only d-connected path between Z and B0 is the direct path from Z to B0,
having edge weight β. As a result, Cov(Z,B0) = β, meaning that setting σ2

A = 1 − α2 − γ2 − 2αβγ
ensures that A0 (and, analogously, A1) have unit variance. Recapping, we have

σ2
Z = 1,

σ2
B = 1− β2,

σ2
A = 1− α2 − γ2 − 2αβγ.

(5)

Our model is thus described by the four non-negative parameters α, β, γ, and δ, depicted as edge weights
in Figure 1, with the constraint that the quantities in Eq. (5) are non-negative. Those constraints in turn
imply that the parameters are each less than or equal to 1.

Our theoretical results in Theorem 1 and Corollary 1 require understanding the conditional distribu-
tions of model features. For multivariate normal random variables, these conditional distributions can
be computed analytically (40), allowing us to examine properties of our motivating SEM in more depth.
Specifically, suppose W is a k-dimensional multivariate normal random variable with mean µ and co-
variance Σ, which we partition into into its first q components and its remaining k − q components:
W = [W1,W2]. Further suppose we accordingly partition µ and Σ into its components:

µ =

[
µ1

µ2

]
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q × 1

(k − q)× 1

]
,
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.

Then the distribution of W1 conditional on W2 is multivariate normal with mean

µ1 +Σ12Σ22
−1(W2 − µ2)

and covariance
Σ11 −Σ12Σ22

−1Σ21.

As a result, the linearity assumption of Corollary 1 is satisfied for multivariate normal random vari-
ables. In particular, in our motivating example, the conditional distribution of A1 given A0 and Z is



normal, with
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where the σ notation denotes the covariance of the indexed random variables.
Further, the conditional distribution of (A1, Z) given A0 is likewise multivariate normal, with co-

variance matrix[
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Consequently,
Cov(A1, Z | A0) = σA1Z − σA1A0 · σA0Z , (6)

and, analogously, we have that

Cov(B1, Z | A0) = σB1Z − σB1A0 · σA0Z . (7)

As above, we can compute the covariances in Eqs. (6) and (7) via the Wright rules. For example, as
seen in Figure 1, there are two d-connected paths between Z and A0: the direct connection with edge
weight α; and the path through B0, with product of edge weights βγ. Consequently, Cov(Z,A0) =
α+βγ. This procedure allows us to compute all of the terms appearing on the right-hand side of Eqs. (6)
and (7), yielding:

σA0Z = α+ βγ

σA1Z = α+ βγ

σB1Z = β

σA1A0 = α2 + 2αβγ + β2γ2 + γ2δ

σB1A0 = αβ + β2γ + γδ.

(8)

Leveraging the above, we now show that Cov(A1, Z | A0) ≥ 0, meaning that neighborhood is
positively correlated with future arrests, conditional on past arrests. To see this, first note that

δ = Cov(UB0 , UB1)

≤ σ2
B

= 1− β2,



and so β2 + δ ≤ 1. Now,

Cov(A1, Z | A0) = σA1Z − σA1A0 · σA0Z

= α+ βγ − (α+ βγ) · (α2 + 2αβγ + β2γ2 + γ2δ)

= (α+ βγ) · (1− α2 − 2αβγ − β2γ2 − γ2δ)

= (α+ βγ) · (1− α2 − 2αβγ − γ2(β2 + δ))

≥ (α+ βγ) · (1− α2 − 2αβγ − γ2)

= (α+ βγ) · σ2
A

≥ 0,

where the first inequality follows from the fact that β2 + δ ≤ 1.
Next we consider Cov(B1, Z | A0), and note that

Cov(B1, Z | A0) = σB1Z − σB1A0 · σA0Z

= β − (αβ + β2γ + γδ) · (α+ βγ).

In particular, when β = 0, meaning that neighborhood does not impact behavior, then

Cov(B1, Z | A0) = −αγδ.

In other words, when neighborhood does not impact behavior (i.e., when β = 0), neighborhood is
negatively correlated with future behavior conditional on past arrests. (And, by the above, neighborhood
is always positively correlated with future arrests conditional on past arrests.) By Corollary 1, it is thus
better in this case to base predictions of future behavior solely on past arrests, excluding neighborhood,
as we see in Figure 2.
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