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Respondent-driven sampling (RDS) is a network-based technique
for estimating traits in hard-to-reach populations, for example,
the prevalence of HIV among drug injectors. In recent years RDS
has been used in more than 120 studies in more than 20 countries
and by leading public health organizations, including the Centers
for Disease Control and Prevention in the United States. Despite
the widespread use and growing popularity of RDS, there has been
little empirical validation of the methodology. Here we investigate
the performance of RDS by simulating sampling from 85 known,
network populations. Across a variety of traits we find that RDS
is substantially less accurate than generally acknowledged and
that reported RDS confidence intervals are misleadingly narrow.
Moreover, because we model a best-case scenario in which the
theoretical RDSsamplingassumptionsholdexactly, it is unlikely that
RDSperformsanybetter inpractice than inour simulations.Notably,
thepoorperformanceofRDS isdrivennotby thebiasbutby thehigh
varianceof estimates, apossibility that hadbeen largelyoverlooked
in the RDS literature. Given the consistency of our results across
networks and our generous sampling conditions, we conclude that
RDS as currently practiced may not be suitable for key aspects of
public health surveillance where it is now extensively applied.

disease surveillance ∣ snowball sampling ∣ social networks

The development and evaluation of public health policies often
require detailed information about so-called hard-to-reach or

hidden populations. For example, HIV researchers are especially
interested in monitoring risk behavior and disease prevalence
among injection drug users, men who have sex with men, and
commercial sex workers—the groups at highest risk for HIV in
most countries. Unfortunately, however, these high-risk groups
are not easily studied with standard sampling methods, including
institutional sampling, targeted sampling, and time-location
sampling (1).

Respondent-driven sampling (RDS) (2–4) facilitates examina-
tion of such hidden populations via a chain-referral procedure in
which participants recruit one another, akin to snowball sam-
pling. RDS is now widely used in the public health community
and has been recently applied in more than 120 studies in more
than 20 countries, involving a total of more than 32,000 partici-
pants (5). In particular, in helping to track the HIV epidemic,
RDS is used by the Centers for Disease Control and Prevention
(CDC) (6, 7) and by the United States President’s Emergency
Plan for AIDS Relief.

RDS is a method both for data collection and for statistical
inference. To generate an RDS sample, one begins by selecting
a small number of initial participants (“seeds”) from the target
population who are asked—and typically provided financial
incentive—to recruit their contacts in the population (2). The
sampling proceeds with current sample members recruiting
the next wave of sample members, continuing until the desired
sample size is reached. Participants are usually allowed to recruit
up to three other contacts in order to ensure sampling continues
even if some sample members do not recruit.

With the RDS sampling design, individuals with more contacts
in the target population are more likely to be recruited (4). To
adjust for this selection bias, respondents are weighted inversely
proportional to their network degree or number of contacts.

Specifically, for any individual trait f (e.g., age), the RDS estimate
μ̂f of the population mean of f is defined to be

μ̂f ¼
1

∑
n

i¼1
1∕degreeðXiÞ∑

n

i¼1

f ðXiÞ
degreeðXiÞ

; [1]

where X1;…; Xn are the n participants in the study.† Typically, f is
0–1, for example, indicating infectivity of a specific disease, in
which case μ̂f estimates prevalence of the trait in the target
population (8, 10).

The accuracy of RDS estimates is affected by the structure of
the underlying social network, the distribution of traits within
the network, and the recruitment dynamics. In particular,
RDS can perform poorly when traits cluster in cohesive subpo-
pulations (10)—a phenomenon that may be especially acute in
the case of infectious diseases (11). Gauging the combined effect
of these factors has proven difficult, and previous attempts to
assess the performance of RDS have been largely inconclusive.

The earliest evaluations of RDS come from simulation studies
on synthetic networks (4, 8, 12). These studies, however, likely
overestimated the accuracy of RDS by neglecting to design syn-
thetic networks that adequately mimic the community structure
of real social networks (10). Recently, Gile and Handcock (13)
have evaluated the bias of RDS estimates on more realistic syn-
thetic networks. Beyond simulation studies, there have been
three approaches for assessing the quality of RDS. First, RDS
has been carried out on a population with known characteristics:
undergraduates at a large residential university (9, 14). Because
only a single RDS sample was taken, however, it is difficult to
ascertain sample-to-sample variability of estimates.‡ Second,
RDS estimates have been compared to estimates derived from
alternative sampling methods (15–21) (Table S1). These compar-
isons have not yielded consistent patterns and are hindered by the
fact that true population values remain unknown.§ Finally, the
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evidence in support of RDS, we note that the majority of these traits had true population
proportions less than 10%; thus an absolute error of five percentage points is
relatively large.

§In some cases, RDS has produced results generally in line with other methods [e.g., a study
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from RDS indicated an older, more downtown-based IDU population than two previous
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higher than past estimates from time-location sampling—in this case, RDS estimates were
believed to better characterize the target population. Additional discussion of these
comparative studies is available in ref. 17.
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stability of repeated cross-sectional RDS estimates has been
examined, again yielding ambiguous results. For example, in stu-
dies of men who have sex with men (MSM) in Beijing, China in
2004, 2005, and 2006 (22), year-to-year RDS estimates for age
and employment status were stable, whereas estimates of educa-
tion and sexual orientation were suspiciously volatile.¶

In contrast to previous approaches, we evaluate the perfor-
mance of RDS by simulating the sampling and estimation process
on 85 real populations mapped in two previous studies. In all
cases, both the network structure of the population and demo-
graphic traits for each individual are available. We are thus able
to directly compare empirical RDS estimates to true population
values and, in particular, to measure the variability of estimates.

Data and Methods
Our first source of data, Project 90, was a large, multiyear study
that began in 1987 as a prospective examination of the influence
of network structure on the propagation of infectious disease
(23). As such, researchers attempted to construct a network
census of high-risk heterosexuals in Colorado Springs, focusing
particularly on sex workers and drug injectors and their sexual
and drug partners (23–26). We restrict attention to the giant
component of the network, comprising 4,430 individuals and
18,407 edges, representing social, sexual, and drug affiliation.
Our second data source, the National Longitudinal Study of Ado-
lescent Health (Add Health), mapped the friendship networks of
84 middle and high schools in the United States (27–29). The
giant components for these school networks range in size from
25 to 2,539 students—with a median size of 753—and collectively
include a total of 72,262 individuals and 258,688 edges.

Rather than attempting to model the complex social dynamics
that play out during the RDS recruitment process, in our simula-
tions we assume the same, idealized sampling conditions consid-
ered in the theoretical RDS literature (4, 8, 10, 30). Specifically,
(i) initial sample members are chosen independently and propor-
tional to network degree; (ii) relationships within the population
are symmetric (i.e., if A is a contact of B, then B is also a contact
of A); (iii) participants recruit uniformly at random from their
contacts; (iv) those who are recruited always participate in the
study; (v) individuals can be recruited into the sample more than
once; (vi) the number of recruits per participant does not depend
on individual traits; and (vii) respondents accurately report their
social network degree. The remaining parameters of our simula-
tions are modeled after common RDS study features (5). Starting
from ten initial seeds, each participant recruits between 0 and 3
other individuals. The exact recruitment distribution mimics an
RDS study of drug injectors in Tijuana and Ciudad Juarez,
Mexico (31), in which 1∕3 of participants recruited no one,
1∕6 recruited one other participant, 1∕6 recruited two other
participants, and 1∕3 recruited three other participants, the max-
imum allowed. The simulated recruitment procedure continues
until a sample size of 500 is reached. The entire sampling process
was repeated 10,000 times on each network to generate replicate
estimates.

Results
From each simulated sample, the RDS estimator (Eq. 1) was used
to infer the population proportion of a given trait—for example,
the proportion of drug dealers in the Project 90 network or the
proportion of students on the soccer team in a particular Add
Health school. Consistent with theoretical results (8, 10), we find
RDS generates approximately unbiased estimates: Across all
networks and traits, both the mean and median bias are less than
0.0005.

The variability of RDS estimates, however, is significantly
larger than generally acknowledged. We quantify this variability
in terms of design effect (32), which benchmarks the performance
of RDS against that of simple random sampling (SRS). Specifi-
cally, the design effect d is Varðp̂RDSÞ∕Varðp̂SRSÞ, where p̂RDS is
the RDS estimate and p̂SRS is the estimate obtained from SRS.
It follows that an RDS estimate with sample size n and design
effect d has the same variance as a simple random sample of
size n∕d. A design effect of 10, for example, effectively reduces
an RDS sample of nominal size 500 to an SRS sample of
size 50.

Consistently large design effects are seen in both Project 90
and Add Health (Fig. 1). The 13 binary traits in Project 90 have
design effects that range from 5.7 to 58.3, with a median design
effect of 11.0. As a consequence, estimating the 17% unemploy-
ment rate in Project 90, which has a design effect of 10, with
reasonable precision (�5%, 95% confidence) requires an RDS
sample of approximately 2,300 people—a sample size 5 times
larger than in nearly all previous RDS studies (5). We observe
a similar phenomenon for each of the 46 binary traits in Add
Health. The median design effect for traits ranges from 4.2 to
14.4, where for each trait the median is taken across the 84
AddHealth schools. The overall median design effect for all traits
in all schools is 5.9.

All traits in the Project 90 and the Add Health networks
yield design effects larger than what is commonly assumed in
the planning stages of RDS studies. A review of 91 studies found
that more than half assumed a design effect less than 1.5, and all
assumed a design effect less than 2.5 (5). Furthermore, a rule-
of-thumb design effect of 2 had been suggested by Salganik
(12). Given that we find typical design effects greater than 5, even
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Fig. 1. Design effects for the 13 binary traits in Project 90 (A) and the 46
binary traits in Add Health (B); in Add Health, each circle indicates the design
effect of a trait in one of 84 schools.

¶Year-to-year estimates for the proportion of the population with less than a high school
education went from 33% to 70% to 66%, and estimates for the proportion bisexual
went from 30% to 55% to 52%.
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under optimistic sampling conditions, it is likely that many RDS
studies do not have sufficiently large sample sizes to meet their
stated study objectives. In particular, the CDC, in its assessment
of RDS for use in the National HIV Behavioral Surveillance
System, concludes that a sample of size 500 is adequate to esti-
mate traits with 5% precision (95% confidence) (33), implicitly
assuming a design effect of 1. Though valid if subjects are chosen
by SRS, our results suggest an RDS sample of 500 may lead to
errors of 10% or more.

Compounding these large design effects, the standard RDS
confidence intervals developed by Salganik (12, 34) are often mis-
leadingly narrow, masking the effects of inadequate sample sizes
(Fig. 2). In Project 90, the coverage probability of nominal 95%
confidence intervals ranges across traits from 42% to 65%, with
median coverage of 52%. In other words, though 95% of such
intervals should contain the true population proportion, in our
simulations only about half of the intervals in fact do. We find
similar results for the Add Health networks, where nominal
95% intervals have coverage probability across traits ranging
from 44% to 72%, with median coverage of 62%. It thus seems
likely that, in a substantial fraction of field studies, true popula-
tion values fall outside the reported ranges.

To put our results in context, we compare the RDS estimator
(Eq. 1)—which weights sample members inversely proportional
to their network degree—to the unweighted mean of the RDS
sample, an estimation method that mimics traditional snowball
sampling and that is widely considered problematic for public
health surveillance (35, 36). As shown in Fig. 3, though the
sample mean generally has larger bias than the RDS estimator,
the two estimators are comparable in terms of their standard
error and their overall performance, as quantified by root-
mean-squared error (RMSE). Specifically, in Add Health the

median absolute bias, standard error, and RMSE of the sample
mean are 0.005, 0.023, and 0.025, respectively, compared to
0.0004, 0.026, and 0.026, respectively, for the RDS estimator;
and in Project 90 the analogous values for the sample mean
are 0.022, 0.035, and 0.041, respectively, compared to 0.0004,
0.034, and 0.034, respectively, for RDS.

Helping to explain why RDS and the sample mean perform
similarly, we note that weighted and unweighted means differ
to the extent that weights and traits are correlated, a fact that
is well-documented in the survey sampling literature (37). Thus
the advantages of RDS are manifest primarily when network
degree correlates with, for example, drug use, sexual behavior,
or other traits of interest. At least in the datasets we examine,
however, we see mostly weak correlations and thus generally find
weighting to have minimal impact. In Add Health, where traits
and degree have median absolute correlation of 0.05, RDS
and the sample mean perform almost identically: The median
difference in RMSE (RMSE of the sample mean minus RMSE
of the RDS estimator) is −0.001 across all school-trait pairs. Ten
of the thirteen traits in Project 90 are likewise weakly correlated
with degree—median absolute correlation among these ten is
0.06—and RDS and the sample mean are correspondingly simi-
lar, with a median difference in RMSE of 0.005. The remaining
traits—indicating, respectively, whether an individual is a drug
dealer, a sex worker, or unemployed—are more highly correlated
with degree (0.25, 0.30, and 0.31), and the relative value of RDS is
more pronounced, with reductions in RMSE of 0.06, 0.09, and
0.13. Though, even in these three cases where RDS substantially
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Fig. 2. Coverage rates of nominal 95% RDS confidence intervals in Project
90 (A) and Add Health (B). For each trait in Add Health, the mean coverage
over all 84 schools is shown.
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Fig. 3. Comparison of bias, standard error, and RMSE between the RDS
estimator and the unweighted mean of the RDS sample in Project 90
(A–C) and Add Health (D–F). Each point corresponds to a given trait in a given
network population.
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outperforms the sample mean, RDS is still far from ideal, with
design effects greater than 10 for all three traits.

In the above analysis, we considered the performance of RDS
for 85 previously mapped real social networks. To check the
robustness of our results, we simulate RDS on several variants
of these network populations. We find that large design effects
persist, suggesting that our results extend beyond the particular
populations we study and hold more generally. First, a significant
structural anomaly with the Project 90 network is the large num-
ber of so-called leaf nodes (i.e., individuals connected to exactly
one other node), which comprise 18% of the giant component.
These leaves often correspond to individuals who were identified
in the study by another participant but who themselves were not
directly interviewed. Repeating our analysis on the Project 90
subnetwork that excludes these leaves, we find no appreciable
change in the performance of RDS, with a median design effect
of 10.8 compared to 11.0 in the original network (Fig. S2). Sec-
ond, of the 84 Add Health networks, 44 represent joint middle
and high schools whereas the remaining 40 are exclusively high
schools. In the joint middle and high schools there is substantial
segregation between these two constituent subpopulations
(29, 38, 39), and as such, one may worry that our results are driven
by this single, atypical, network feature. We find, however, that
the distribution of design effects in the joint schools is approxi-
mately the same as in those that are strictly high schools, with
median design effects of 5.9 and 6.0, respectively (Fig. S3). Third,
students in the Add Health study were asked to name up to five
male and five female friends, and in our primary analysis we
inferred a symmetric edge between students A and B if either in-
dividual named the other. Alternatively, one could consider only
reciprocal nominations—inferring a symmetric tie between A and
B only if A and B both nominate one another—that potentially
correspond to stronger friendships (29).∥ We find that the perfor-
mance of RDS on these reciprocal-nomination networks is in fact
considerably worse, with a median design effect of 18.9, com-
pared to 5.9 for the one-sided-nomination networks (Fig. S4).
For a final robustness check, we confirm that large design effects
are not driven by obvious structural or demographic properties of
the target populations. Specifically, across the 84 Add Health
schools, we find that design effect is weakly correlated with both
school size (0.07) and the true population proportion of the trait
being estimated (0.27) (Fig. S5).**

Discussion
Past work has emphasized that RDS in theory generates approxi-
mately unbiased estimates (4, 8, 30)—and we indeed find this to
be the case in our simulations. However, by neglecting to consider
the variance, this result has been widely interpreted as indicating
that RDS has low error. Explicitly examining the variance of
RDS, we find that estimates are much less precise than previously
believed. In particular, RDS as currently practiced may be poorly
suited for important aspects of public health surveillance where it
is now extensively applied. For example, to reliably detect a
decline in unsafe injection practice from 40% to 30% with
SRS requires approximately 350 people at each of the two time
points.†† With a design effect of 5—a typical finding in our simu-
lations—the required sample size jumps to 1750, substantially

larger than nearly all RDS studies (5). Consequently, it seems
that many existing studies do not have sufficient power to identify
even quite large changes in behavior and almost certainly could
not identify with statistical confidence small changes in disease
prevalence.

Our findings are subject to two potential objections. First, the
Project 90 and the Add Health networks are not perfect repre-
sentations of hidden populations. In particular, networks of high
school students are unlikely to be representative of networks of
populations at high risk for HIV, and the Project 90 network,
although it maps such a hidden population, probably suffers from
significant missing data. We attempted to mitigate this short
coming by analyzing two distinct datasets, each with different
limitations, and by analyzing several thousand network-trait pairs
(46 traits × 84 school networks from Add Health, and 13 traits
in the Project 90 network), thus decreasing the chance that our
findings are driven by anomalous features of any one trait or
network. Furthermore, we considered several modified versions
of these networks to check for robustness to structural perturba-
tions. The qualitative consistency of our results suggests that the
observed high variance of RDS estimates is the norm rather than
the exception.

Second, in order to simulate recruitment, we followed the
same idealized sampling design assumed in the theoretical
RDS literature; it is thus possible that RDS could perform better
under real-world sampling conditions than it does in our simu-
lated environment. It seems much more likely, however, that
actual RDS sampling dynamics only exacerbate the problems
indicated by our results (13). Specifically, initial participants
are generally a convenience sample and are almost certainly
not chosen in the judicious, independent manner of our simula-
tions (40). There is also evidence of nonrandom recruitment of
peers and of differential participation and recruitment rates
(40–44). In a study of MSM in Brazil (45), for example, partici-
pants were more likely to recruit those who they thought engaged
in riskier behavior and who would therefore most benefit from
HIV testing; this same study found that some individuals refused
to participate for fear of disclosing their sexual orientation.
Evidence of differential recruitment rates was seen in a study
of jazz musicians in New York, with women on average recruiting
more than 60%more participants than men (30). Furthermore, in
practice, and in contrast to our simulations, participants are
prohibited from entering an RDS study multiple times, a policy
intended to deter fraudulent recruitment tactics, but one that also
generally increases the bias of estimates (13). Finally, ascertain-
ing an individual’s network degree is a challenging problem
(46–48)—particularly in the context of RDS (40)—and so self-
reported network size represents a possibly significant source
of nonsampling error absent from our simulations.

Conclusion
Simulating sampling across 85 real social networks, we find the
variance of RDS is typically 5–10 times greater than that of
SRS and, moreover, that standard RDS confidence intervals
are misleadingly narrow. In light of our generous sampling
assumptions, and the robustness of our results to network pertur-
bations, it is likely that RDS will perform no better—and may
perhaps perform considerably worse—in field studies. In particu-
lar, our results highlight the considerable obstacles facing RDS in
applications such as disease surveillance. By clarifying the limita-
tions of RDS, we hope to encourage its further development,
systematic evaluation, and cautious application.
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