
Assessing the Quality of AI-Generated Exams: A Large-Scale Field Study
Calvin Isley1, Joshua Gilbert2, Evangelos Kassos1, Michaela Kocher1, Allen Nie3, Emma

Brunskill3, Ben Domingue4, Jake Hofman5, Joscha Legewie6, Teddy Svoronos1, Charlotte
Tuminelli1, Sharad Goel1

1Harvard Kennedy School, Harvard University, Cambridge, MA 02138, USA
2Harvard Graduate School of Education, Harvard University, Cambridge, MA 02138, USA

3Computer Science, Stanford University, Stanford, CA 94305, USA
4Stanford Graduate School of Education, Stanford University, Stanford, CA 94305, USA

5Microsoft Research, Microsoft, New York City, NY, 10012
6Sociology, Harvard University, Cambridge, MA, 02138

cisley@g.harvard.edu, jlegewie@fas.harvard.edu, ekassos@hks.harvard.edu, mkocher@hks.harvard.edu,
anie@cs.stanford.edu, ebrun@cs.stanford.edu, bdomingu@stanford.edu, jmh@microsoft.com,

jlegewie@fas.harvard.edu, theodore svoronos@hks.harvard.edu, charlotte tuminelli@hks.harvard.edu,
sgoel@hks.harvard.edu

Abstract

While large language models (LLMs) challenge conventional
methods of teaching and learning, they present an exciting
opportunity to improve efficiency and scale high-quality in-
struction. One promising application is the generation of cus-
tomized exams, tailored to specific course content. There has
been significant recent excitement on automatically gener-
ating questions using artificial intelligence, but also com-
paratively little work evaluating the psychometric quality of
these items in real-world educational settings. Filling this gap
is an important step toward understanding generative AI’s
role in effective test design. In this study, we introduce and
evaluate an iterative refinement strategy for question gener-
ation, repeatedly producing, assessing, and improving ques-
tions through cycles of LLM-generated critique and revision.
We evaluate the quality of these AI-generated questions in a
large-scale field study involving 91 classes—covering com-
puter science, mathematics, chemistry, and more—in dozens
of colleges across the United States, comprising nearly 1700
students. Our analysis, based on item response theory (IRT),
suggests that for students in our sample the AI-generated
questions performed comparably to expert-created questions
designed for standardized exams. Our results illustrate the
power of AI to make high-quality assessments more readily
available, benefiting both teachers and students.

Code — https://github.com/calisley/ai exams
Datasets —

https://github.com/calisley/ai exams/tree/main/data

Introduction
Generative AI presents both unique challenges and oppor-
tunities for educators. On one hand, it threatens to under-
mine traditional forms of assessment, if used improperly
(Ho 2024; Briggs 2024). Moreover, potentially biased or
otherwise inaccurate information produced by LLMs could
be especially harmful in educational settings, where stu-
dents are particularly receptive to internalizing the provided
information—even if it is wrong. Despite these challenges,

generative AI has the potential to dramatically improve the
quality and accessibility of education. LLMs can in principle
deliver highly personalized educational experiences at scale,
democratizing access to high-quality instruction.

Here, we investigate the potential of AI to assist with
one specific aspect of teaching and learning: producing
high-quality assessments customized to individual courses.
Creating suitable exam questions can take instructors and
other experts hours or even days (Attali et al. 2022; Drori
et al. 2023). For resourced-constrained educators, this time-
consuming process may detract from their ability to mean-
ingfully engage with students in other ways. The alternative
is for educators to spend little time on test creation, but this
can result in tests that are too easy, too hard, or generally do
not adequately capture student ability and aggregate class
performance.

To address this issue, educational researchers have long
explored ways to generate high-quality assessments auto-
matically (Irvine and Kyllonen 2002; Gierl and Lai 2016).
The advent of LLMs represents a new frontier in automated
question generation (Tan et al. 2024), with a flurry of re-
cent activity seeking to address the problem. However, de-
spite much work exploring the potential of generative AI to
create exam questions, there are relatively few studies for-
mally studying the performance of LLM-generated items in
real-world educational environments—a critical step for un-
derstanding and responsibly using these AI-generated ques-
tions.

In this study, we introduce an iterative refinement
strategy—similar to Self-Refine (Madaan et al. 2023)—for
generating exam questions tailored to specific course con-
tent. In one of the largest field studies of AI-generated as-
sessments to date, we evaluate the quality of the generated
exam items in 71 of our 91 participating college courses,
reaching approximately 1,200 students. We use the remain-
ing 20 courses (approximately 500 students) to benchmark
the performance of our AI-generated questions against prob-
lems created by human experts for a standardized Advanced

Placement (AP) exam. Full details of the field study are pro-
vided below.

Using instructor-provided course materials, we tailor the
AI-generated questions to each course’s specific context.
Analyzing the student responses with item response theory
(IRT; Van der Linden and van der Linden 2016), we find that
the AI-generated questions performed on par with those cre-
ated by experts, both in terms of their overall difficulty and
their discriminative power. On average, the AI-generated
items we produced were somewhat easier but also more dis-
criminating than the expert-produced questions. Our find-
ings illustrate the potential for generative AI to increase
access to high-quality, customized assessments, benefiting
both teachers and students.

Related Work
Automated Item Generation Since the advent of
computer-based assessment, educational researchers have
explored the potential of Automated Item Generation (AIG)
(Irvine and Kyllonen 2002; Gierl and Lai 2016). Most work
on AIG has focused on college-level multiple-choice ques-
tions in STEM fields, a tradition we follow in this study
(Song, Du, and Zheng 2025). Historical approaches to AIG
were often “model” based, utilizing human-vetted schemas
of questions containing variables that are later populated al-
gorithmically (Bejar 2002; Gierl, Lai, and Turner 2012; At-
tali 2018). As a simple example, a schema might be of the
form a+b =?, where the variables a and b could be assigned
values.

AI-Assisted Automated Item Generation Beyond this
model-based approach, researchers have used natural lan-
guage processing to extend AIG to domains and question-
types that may be trickier to model, like factoid ques-
tions or personality test items (von Davier 2018; Serban
et al. 2016) Following the recent development of LLMs, re-
searchers have now shifted their attention towards using gen-
erative AI to produce items (e.g., Attali et al. 2022; Russell-
Lasalandra, Christensen, and Golino 2024; Chan et al. 2025;
Bhushan et al. 2025). This work has highlighted the value of
proper prompt engineering for creating high-quality ques-
tions (Kıyak and Emekli 2024), but has not typically con-
sidered more advanced generation techniques, like the itera-
tive refinement approach we apply here. Past work has also
left unanswered the extent to which generative AI can cre-
ate highly tailored questions across a diverse range of course
content.

Despite increasing interest in using generative AI to auto-
matically generate items, there has been limited evaluation
of item quality. Most such work has relied exclusively on hu-
man experts to evaluate items, rather than considering actual
responses to generated questions administered in field set-
tings. Indeed, a recent review of 60 papers that used LLMs to
perform AIG (Tan et al. 2024) noted that psychometric eval-
uations of test items is not done in most papers, and “recom-
mend[ed] evaluating both the measurement properties and
pedagogical soundness of generated items as an essential
step in AIG.” There are, however, some exceptions to this
general trend. Prior work (Zelikman et al. 2023) used LLMs

as simulated students to help automatically create parallel
tests using a much smaller set of human data, with similar
psychometric properties to human experts. Similarly, Liu,
Bhandari, and Pardos (2025) recently examined using LLMs
as simulated humans to help designers generate items, and
evaluated whether the LLM responses yielded similar psy-
chometric item parameters to those obtained using human
responses. Additionally, two recent studies had humans take
tests with both human and LLM-generated items, finding
that both sets of items had similar item difficulty distribu-
tions in an IRT analysis. While informative, these studies
were done at a relatively small scale. The first was a 36 stu-
dent participant study on English Language Teaching, find-
ing that ChatGPT-generated items had slightly lower dis-
crimination (Kıyak and Emekli 2024); the second was a
207-subject study (outside the classroom) on Algebra, find-
ing LLM-generated items had slightly higher discrimina-
tion (Bhandari et al. 2024). To our knowledge, there has not
been a large-scale field study of the psychometric proper-
ties of generative-AI created items across a diverse range of
college-level content.

Methodology
Building on past work on AI-assisted AIG, we developed a
two-stage, iterative process for generating customized, high-
quality exam questions tailored to a class’s specific course
content. Our goal was to create relatively short exams, com-
prised of 10 multiple-choice questions that could be com-
pleted in about 1-2 minutes each, to ease burdens on student
participants. Below we describe our AI-based exam genera-
tion process, as well the creation of our benchmark tests.

AI-based exam generation
To generate exam questions, we employed an iterative
prompt refinement strategy, similar to Self-Refine (Madaan
et al. 2023). To ensure questions were tailored to the cov-
ered class material, we incorporated a range of instructor-
provided course materials, as described below. All question
generation and judging requests were performed via Ope-
nAI’s o3-mini model—OpenAI’s most advanced reasoning
model available at the time of generation. A broad overview
of the exam generation procedure is shown in Figure 1, and
psuedo-code is provided in the appendix.

Question Generation For each class, we independently
generated questions as follows. To start, we compiled the
instructor-provided course materials—including the course
description, syllabus, and prior homework or exams—and
converted them to plain text. This material was then included
as context in the prompts for both the question generator
and the judge. Full prompt templates are included in the ap-
pendix.

Next, we repeated the following three steps until we had
20 judge-labeled “good” questions:

1. Question Generation: Generate one multiple choice
question that tests the concepts covered in the provided
materials. To align the AI-generator to our desired ques-
tion quality, we provided good and bad examples for

Figure 1: To produce our test items, our algorithm repeatedly generates and evaluates model outputs, until questions are deemed
acceptable. Course materials are provided to both the AI-generator and AI-judge to ensure questions and feedback are context
specific. After 20 questions are generated, they are passed to an additional AI-judge, who evaluates the appropriateness and
difficulty of the 20 generated items. The hardest 10 become the final test.

few shot inference. Specifically, in every iteration for
all classes, our prompt contained five questions selected
from the public 2012 AP Statistics practice exam as
“good” candidate examples.1 No “bad” questions were
provided at the beginning of iteration. As the iterative
refinement cycle progresses, previously generated ques-
tions are inserted into the prompt for future generation.
We insert up to the first five “good” and five “bad” ques-
tions into the prompt, with the AI-judge’s label indicating
a question’s quality (as described in Steps 2 and 3 below).

2. Question evaluation: Assess the question’s appropri-
ateness for the class, uniqueness relative to the “good”
examples provided, and a few other functional criteria
(e.g., ensuring that questions do not test students on in-
formation included in the syllabus). The AI-judge returns
either a “good” or “bad“ label of question quality.

3. Prompt self-refinement: The question and label gen-
erated in steps 1 and 2 above are inserted into the AI-
generator’s prompt as additional context (i.e,. the previ-
ously generated question is provided as either a “good”
or “bad” example).

The following are examples of a “good” and a “bad” ques-
tion produced by our iterative generation procedure. The
“bad” question was rejected because it tests knowledge of
logistical details of the class rather than substantive content.

“Good” – Programming Languages: In a statically-
typed functional language that is extended with
object-oriented features, what is a primary design
challenge that arises from such integration?

“Bad” – Advanced Biochemistry Laboratory: Ac-
cording to the final report guidelines for Advanced
Biochemistry Laboratory, which of the following mis-
takes would most likely result in your manuscript be-
ing returned ungraded?

1The 2012 AP Statistics Practice exam can be found here:
https://apcentral.collegeboard.org/media/pdf/ap-statistics-practice-
exam-2012.pdf

When the judge rates that 20 good questions are gener-
ated, the loop above terminates.

From questions to exams To create the full 10-question,
class-specific exam, the 20 questions generated above were
passed through a final round of AI-judging, which as-
sessed question difficulty, appropriateness, and confirmed
the generator-provided answer was correct. Any questions
deemed inappropriate for the course and any question where
the judge disagrees about the correct answer were removed.
Finally, we then selected the 10 hardest questions (as evalu-
ated by the AI-judge) to include in the exam. This was done
because in our informal assessments, the generated ques-
tions appeared to be on the easier side, and so we prioritized
the most difficult questions for inclusion in the exam; see
the evaluation section below for further details on question
difficulty. If the final round of judging removed more than
10 questions, an additional 20 questions were generated for
that course and the full group of 40 was re-evaluated. In the
appendix, we include the full 10-question exam for a class
on programming languages.

Benchmarking against traditional exam questions
We compared our AI-generated exam questions to high-
quality human-generated questions designed for use on stan-
dardized tests. In particular, we benchmarked our method
against the 24 multiple-choice questions included in a pub-
licly available 2012 AP Statistics practice exam that could
be faithfully recreated with plain text (i.e., did not include
figures or tables).

The range of topics tested by these questions, as well as
their general difficulty, appeared to align well with the ma-
terial covered in the 20 statistics courses in our study. To
further tailor the exams to the classes, we used an LLM to
select the 10 most appropriate questions for each statistics
class from this question bank. Specifically, we used o3-mini
to first assess a question’s key concepts and difficulty. For
each of the statistics courses, we then constructed a list of
concepts covered in the class, which we extracted from the
provided class materials. Finally, questions were added to
the exam in descending order of difficulty—on the theory

that the college classes in our sample were more difficult
than typical AP classes offered in high school—while pre-
serving course fit and concept diversity.

We limit our benchmark to statistics-related exams, as this
was one of the only areas for which we could find high-
quality traditional questions that tested the material covered
by the classes in our study. While this limits the generaliz-
ability of our comparison, it also illustrates our key contribu-
tion: automatic creation of highly tailored questions across
a diverse array of subjects for which there are often few al-
ternatives.

Evaluation
We assessed the quality of our AI-generated exams, as well
as the benchmark exams, via a large-scale field study con-
ducted at a diverse range of colleges and universities across
the United States. Student responses were analyzed with
item response theory (IRT), yielding assessments of each
question in our corpus, as well as the overall quality of the
class-specific exams.

Field Study
Our field study comprised 182 classes at American colleges.
These classes corresponded to 164 unique courses, as some
courses enrolled multiple sections of the same course as
unique classes. This sample primarily included courses in
STEM related fields. Instructors provided their course ma-
terials to facilitate tailored question generation. Neither stu-
dents nor instructors were told whether questions were AI-
generated or came from a standardized test.

At the beginning of the 2025 Spring semester, students
in participating classes took a common pre-test of general
quantitative reasoning skills. This common assessment was
used to obtain comparable estimates of ability across our di-
verse student population. Then, near the end of the semester,
students completed the tailored exam that we had created for
their class. Participating instructors had the choice to assign
both the pre-test and semester-end exams as either home-
work or as an in-class assignment. All sections of the same
course received the same semester-end assessment.

Of the 182 participating classes, we have exam responses
from 121 courses (66%). For the remaining courses, we ei-
ther had low student participation rates or determined that
the course itself was not suitable for exam generation (e.g.,
it was a research seminar without homework or other ex-
ams). Of the 121 classes for which we ultimately collected
exam data, we manually created exams for 30 classes (24%)
through an ad-hoc process to pilot our exam-administration
procedure; we excluded these classes without analyzing the
corresponding data.

Our final dataset thus consists of responses from 91
classes, comprising 1686 students who completed both the
pre-test and semester-end exam. In sum, 1208 students in 71
of these classes received the AI-generated exam, and the re-
maining 478 students in the 20 statistics classes received an
assessments with questions from the AP statistics practice
exam. In some rare cases (less than 2%), students submit-
ted multiple responses for either the pre-test or semester-end

exams. In these instances, we superscored their responses,
retaining their highest score for each individual question
across attempts.

Item Response Theory
We evaluate the quality of both individual exam questions
and the complete 10-question exams with item response the-
ory (IRT). IRT (Van der Linden and van der Linden 2016) is
a standard method for obtaining assessments of question (re-
ferred to as an “item”) and exam quality. It yields estimates
of both difficulty (i.e., how hard an item is) and discrimi-
natory power (i.e., how well an item separates out stronger
from weaker students).

IRT models the probability of a correct response as a func-
tion of an individual’s latent ability θi and latent properties
of each item. We use a two-parameter logistic model (2PL).
Specifically, let Yi,j indicate whether item j was correctly
answered by student i. We then model,

Pr(Yi,j = 1 | θi, αj , βj) = logit−1[αj(θi − βj)]

where αj and βj are latent item parameters.
An item’s difficulty parameter β indicates the ability level

θ at which Pr(Y = 1 | θ, α, β) = 0.5. As an item’s
difficulty increases, only students with higher latent abil-
ity parameters are expected to answer the item correctly.
An item’s discrimination parameter α captures how sharply
Pr(Y = 1 | θ, α, β) changes as a function of θ. More dis-
criminating items do a better job at distinguishing between
students whose abilities lie near the item’s difficulty.

To evaluate exams on the whole, we compute each test’s
information curve, which shows how much information a
test provides about students across the spectrum of ability
levels. The information curve Ij of an item is:

Ij(θ) = α2
jPj(θ)(1− Pj(θ)),

as defined in Lord (1980), where Pj(θ) = Pr(Yj = 1 |
αj , βj , θ). To find an assessment’s total test information, we
sum over its constituent questions:

I(θ) =
∑
j

Ij(θ).

The information of an exam at a given θ tells us the pre-
cision with which the exam measures ability at that point.
Namely, from test information one can also compute a test’s
conditional reliability

R(θ) =
I(θ)

1 + I(θ)
,

which equals the proportion of total variance in estimated
ability that is true signal rather than measurement error at
that ability level (Nicewander 2018).

We examine both the individual item parameters as well
as the aggregate test information to robustly understand how
the AI-generated exams performed in the field, and how AI-
generated questions compare to traditionally created ques-
tions appearing on standardized tests.

Model Inference We apply the above IRT model to si-
multaneously estimate parameters for all students and items
in our dataset, including both pre-test and semester-end re-
sponses in the same model. We include pre-test responses as
anchor items, allowing us to establish a common θ scale be-
tween students who took the AI generated exams and those
who took the exams composed of questions from standard-
ized tests. Though exam type was not randomly assigned,
the common θ allows us to make descriptive comparisons
across the two groups. We note that our choice to use a single
parameter θ for each student implicitly assumes their latent
ability is constant throughout the time period we consider.
We further comment on this assumption in the discussion.

In our setting, we have hundreds of items distributed
across dozens of classes. To efficiently estimate student and
item parameters, we use a Bayesian hierarchal formulation
of the 2PL IRT model. Hierarchical priors allow us to pool
information across items, accounting for variation in both
item discrimination and difficulty simultaneously (Bürkner
2021; König and Alexandrowicz 2024).

Specifically, for the discrimination parameter αj , we as-
sume,

log(αj) ∼ N(µα, σ
2
α),

where

µα ∼ N(0, 1)

σα ∼ half-Cauchy(0, 1).

We follow Gelman (2006); Polson and Scott (2012) in set-
ting weakly informative half-Cauchy priors for the standard
deviation hyper-parameters. Similarly, for the difficulty pa-
rameters βj , we assume,

βj ∼ N(µβ , σ
2
β),

where, as above,

µβ ∼ N(0, 1)

σβ ∼ half-Cauchy(0, 1).

Finally, we follow standard practice and assume individual
abilities are distributed according to a standard normal dis-
tribution (König and Alexandrowicz 2024):

θi ∼ N(0, 1).

which is necessary for our model to be properly identified.
We fit this hierarchical Bayesian IRT model using

cmdstanr (Gabry et al. 2025), with 4 chains and 1000
samples per chain. We confirmed that the Gelman-Rubin
convergence diagnostic, R̂ value of each parameter in the
model was well below 1.05 (max R̂ = 1.008), indicating
proper convergence (> 1.1 indicates potential lack of con-
vergence, ≈ 1 indicates good convergence). All parameters
achieved suitable effective sample sizes (ESS), with a mini-
mum bulk ESS of 773 and a minimum tail ESS of 1,486– in-
dicating that our chains produced sufficient samples to esti-
mate the posterior distributions reliably. Together these indi-
cate that our chains mixed well and the posterior summaries
are reliable.

We further conducted posterior predictive checks to in-
vestigate the calibration of our fitted model. Specifically,

Figure 2: Distribution of predicted proportion of correct an-
swers for questions of each type. The dashed line indicates
the observed proportion of correct answers for participants
in our field study for each exam type.

we compared the posterior distribution of the proportion of
questions answered correctly to the observed value. The re-
sults are shown in Figure 2, disaggregated by exam type:
AI-generated, standardized test, and pre-test. The observed
proportion of correct answers from participants in our field
study lie within the central mass of the posterior distri-
butions, indicating the model is generally well-calibrated
across exam types.

As described above, we identify the model by assum-
ing student ability follows a standard normal distribution:
θj ∼ N(0, 1). Checking the posterior distribution of student
abilities, we find it remains centered near zero with unit vari-
ance. This pattern indicates our items have induced neither
excessive shrinkage nor undue dispersion in the ability es-
timates, suggesting the model is well suited to the available
data. The full posterior distribution of estimated student abil-
ities is available in the appendix.

Results
We now assess the quality of our AI-generated and standard-
ized exam questions—in terms of their difficulty, discrimi-
nation, and test information.

Difficulty Figure 3 shows the distribution across items
of the estimated difficulty parameters β̂j for each question
type. The average difficulty of the AI-generated questions is
β̄AI = −0.45, indicating that students with estimated abil-
ities somewhat below the average had approximately even
odds of answering these questions correctly. This patterns
aligns with the fact that students correctly answered approxi-
mately 60% of the AI-generated questions (Figure 2), mean-
ing that the typical student was expected to answer slightly
more than half of these questions correctly. This pattern may
result from our question-generation process being anchored
to instructor-provided exams and homework assignments,

Figure 3: Distribution of the estimated difficulty parameters
βj by type of exam, with dashed lines at their respective
means.

which might exhibit similar difficulty levels.
In contrast, the standardized test questions appear to be

somewhat more difficult, with β̄STD = 0.35. This number
aligns with the lower overall correctness rate of these items
compared to the AI-generated questions (39% vs. 60%, as
shown in Figure 2). The distribution of the average differ-
ence δβ = β̄AI − β̄STD has posterior mean E[δβ] = −0.79,
with 95% credible interval [−0.94,−0.65]. Pr(δβ < 0) ≈ 1,
indicating it is unlikely that the differences we observe are
due to sampling variation. Our goal was to select questions
that were appropriately calibrated to our student sample,
though it is difficult to do so precisely in the absence of de-
tailed student data.

Discrimination Analogous to our analysis above, Figure 4
shows the distribution of α̂j by item-type: AI-generated or
standardized tests. The AI-generated questions had an av-
erage discrimination of ᾱAI = 1.3 across items. In contrast,
standardized test questions were slightly less discriminating,
with an average of ᾱSTD = 1.2. By standard IRT thresh-
olds (Baker 2001), both AI and standardized test questions
yielded, on average, “moderate” discriminating power. The
posterior distribution of their difference δα = ᾱAI − ᾱSTD
has posterior mean E[δα] = 0.09, with 95% credible in-
terval [−.0918, .253]. Here, Pr(δα > 0) ≈ 0.85 indicating
moderate evidence that AI-generated questions are slightly
more discriminating than standardized test items in our sam-
ple.

Table 1 shows the proportion of items at each discrimina-
tion level, following the taxonomy of Baker (2001). While a
large share of both the AI-generated (64%) and standardized
test questions (71%) are considered “moderate”, 36% of the
AI-generated questions are “highly” or “very highly” dis-
criminating compared to 21% of the standardized test ques-
tions. On the whole, the AI-generated questions are slightly
more discriminating and more tightly distributed than the

Figure 4: Distribution of estimated discrimination param-
eters α̂j across items, disaggregated by type, with dashed
lines at their respective means.

Discrimination AI (%) Std. Tests (%)

Low: (0.35-0.64] 0.0 8.3
Moderate: (0.64 - 1.34] 64.1 70.8
High: (1.34-1.69] 31.7 8.3
Very high: (>1.7) 4.2 12.5

Table 1: Proportions of questions by discrimination level,
following the taxonomy of Baker (2001).

standardized test questions. We interpret these results as ev-
idence that generative AI tools—and our iterative refinement
procedure in particular—are capable of consistently con-
structing questions that can reliably differentiate between
students. This suggests that instructors and testing platforms
could leverage AI-driven item generation to create items
with comparable discriminatory power at a fraction of the
cost, and could offload creation of easier questions to an AI.

Test Information and Reliability We conclude by eval-
uating the quality of the aggregate 10-question exams for
each class. To do so, we consider each exam’s test infor-
mation curve and, in particular, the maximum information
value associated with each exam.

Figure 5 shows the test information curves for every
class by exam type, colored by subject matter. The maxi-
mum test information for the AI-generated exams, averaged
over exams, is Imax = 3.85, corresponding to a reliabil-
ity of R(θ) = 0.79. The test information curves for the
AI-generated exams peaked at an average ability level of
θ = −0.51, indicating they were most sensitive for students
with slightly below-average ability—which aligns with our
finding that the AI-generated exams were best targeted to
students of below average ability.

In comparison, the standardized tests have lower max
information, Imax = 2.61, with corresponding reliability

Figure 5: The test information curves for every class in our sample, split out by which type of exam each class received.

R(θ) = 0.72—in line with our results on the relative dis-
crimination of AI-generated versus standardized test items.
Further, these standardized exams peaked at an average abil-
ity level of θ = 0.32, suggesting they are most discriminat-
ing for students of slightly above average ability, again as ex-
pected from our difficulty results. We note that some of the
standardized tests have bimodal information curves, likely
due to these exams having a subset of particularly difficult
questions (as shown in Figure 5).

Overall, the test information curves further suggest that
the AI-generated exams are more discriminating than the
standardized tests, while being maximally informative for
students with somewhat lower inferred ability. We note,
however, that even though the AI exams show peak relia-
bility for students of below-average ability, they still pro-
vide strong coverage for students across the ability spec-
trum. In particular, at θ = 0, the AI exams have an aver-
age I(0) = 3.36, whereas the standardized test questions
have an average I(0) = 2.5. Indeed, for all θ < .75, the AI
generated exams were, on average, more maximally infor-
mative than the tests composed of questions from standard-
ized exams for the students in our population, illustrating the
strength of the AI generation.

Discussion
Building on past work on automated item generation, we ap-
ply an iterative refinement strategy to create questions tai-
lored to courses across a diverse range of subjects. In one
of the largest field studies of AI-generated questions to date,
we found that this approach achieves psychometric proper-
ties on par with those of questions appearing on high-stakes
standardized tests. These results demonstrate the potential of
AI to produce high-quality assessments at scale across var-
ied topical domains.

Our study is subject to some key limitations. First, we
evaluated the standardized test questions exclusively for the
statistics courses in our sample, reducing the generalizability
of our comparison between AI-generated and standardized
test questions. We note, however, that this limitation stems
from the relative dearth of publicly available question banks

that are suitable for idiosyncratic courses—illustrating the
value of AI generation. Second, for ease of grading, we lim-
ited our study to multiple-choice questions. Our question-
generation procedure can, however, be straightforwardly
modified to produce open-response or short-answer ques-
tions. Third, we limited our evaluation to relatively short, 10-
question tests to avoid overburdening participants, though
it seems likely that our results would extend to longer as-
sessments. Fourth, our reference condition approximated but
likely did not fully replicate a human expert-written exam
tailored to each statistics course. Specifically, although we
used human-authored AP statistics questions, we still had to
match these questions to each course based on concepts and
difficulty as judged by an LLM, which may have introduced
subtle differences from what a human expert might have
done. Finally, our assumption of a constant θ at two time
points was necessary to establish of a common θ scale; in-
ferences based on this assumption would be especially likely
to be invalid if students in classes that received AI tests had
larger (or smaller) changes in θ during the class relative to
those in classes which took the human-generated exams.

Despite these limitations, our approach to exam genera-
tion appears promising for broader educational applications.
Future work could evaluate expert-generated questions in
subjects beyond statistics, potentially drawing on materials
that instructors themselves have created in the past. For the
most accurate inferences, one would ideally randomize as-
sessments to be either AI- or human-generated. Moreover,
one could expand beyond multiple-choice questions into
short answer or open response, using an LLM to grade the
open-ended responses. Finally, to generate questions with
specific difficulty and discrimination levels, one could fine-
tune a model using the type of student response data that
we’ve collected, improving question calibration.

More broadly, AI-assisted question generation has the po-
tential to substantially reduce instructor workloads, increase
access to high-quality assessments, and improve learning
outcomes through more tailored instruction. Instructors of-
ten have limited time and resources to prepare course ma-
terials; with AI-assisted exam generation, instructors may

be able to spend more time on direct student instruction.
Further, our exam generation procedure can be immediately
adapted to non-English speaking populations, and tailored
to diverse cultural contexts, enhancing educational access.
Finally, generating questions in real-time could facilitate tai-
lored, adaptive practice, enhancing student engagement and
learning outcomes. Looking forward, we hope our work will
contribute to more impactful, dynamic, and inclusive teach-
ing and learning environments.

Acknowledgments
We thank the students who participated in our study and the
instructors who facilitated the administration of our exams.
Additionally, we thank WestEd for their assistance recruiting
participants. This work was funded by Microsoft and by the
William F. Milton Fund at Harvard University.

References
Attali, Y. 2018. Automatic Item Generation Unleashed: An
Evaluation of a Large-Scale Deployment of Item Models. In
Penstein Rosé, C.; Martı́nez-Maldonado, R.; Hoppe, H. U.;
Luckin, R.; Mavrikis, M.; Porayska-Pomsta, K.; McLaren,
B.; and du Boulay, B., eds., Artificial Intelligence in Educa-
tion, 17–29. Cham: Springer International Publishing. ISBN
978-3-319-93843-1.
Attali, Y.; Runge, A.; LaFlair, G. T.; Yancey, K.; Goodwin,
S.; Park, Y.; and von Davier, A. A. 2022. The interactive
reading task: Transformer-based automatic item generation.
Frontiers in Artificial Intelligence, 5. Publisher: Frontiers.
Baker, F. B. 2001. The Basics of Item Response Theory. Sec-
ond Edition. For full text: http://ericae, 2nd edition. ISBN:
9781886047037 ERIC Number: ED458219.
Bejar, I. I. 2002. Generative Testing: From Conception to
Implementation. In Item Generation for Test Development.
Routledge. ISBN 978-1-4106-0214-5. Num Pages: 19.
Bhandari, S.; Liu, Y.; Kwak, Y.; and Pardos, Z. A.
2024. Evaluating the psychometric properties of ChatGPT-
generated questions. Computers and Education: Artificial
Intelligence, 7: 100284.
Bhushan, A.; Bhatt, N.; Bhowmick, A.; Ndowo, P. V.; Naik,
S. T.; Pembe, R. M.; and Shums, A. A. P. 2025. Can Open
Source LLMs Generate Math Questions at Graduate Level
Courses? An Empirical Study of Linear Algebra Course. In
International Conference on Artificial Intelligence in Edu-
cation, 52–59. Springer.
Briggs, D. C. 2024. Strive for Measurement, Set New Stan-
dards, and Try Not to Be Evil. Journal of Educational and
Behavioral Statistics, 49(5): 694–701. Publisher: American
Educational Research Association.
Bürkner, P.-C. 2021. Bayesian Item Response Modeling in
R with brms and Stan. Journal of Statistical Software, 100:
1–54.
Chan, K. W.; Ali, F.; Park, J.; Sham, K. S. B.; Tan, E. Y. T.;
Chong, F. W. C.; Qian, K.; and Sze, G. K. 2025. Automatic
item generation in various STEM subjects using large lan-
guage model prompting. Computers and Education: Artifi-
cial Intelligence, 8: 100344.

Drori, I.; Zhang, S. J.; Shuttleworth, R.; Zhang, S.; Tyser, K.;
Chin, Z.; Lantigua, P.; Surbehera, S.; Hunter, G.; Austin, D.;
Tang, L.; Hicke, Y.; Simhon, S.; Karnik, S.; Granberry, D.;
and Udell, M. 2023. From Human Days to Machine Sec-
onds: Automatically Answering and Generating Machine
Learning Final Exams. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining, KDD ’23, 3947–3955. New York, NY, USA: Asso-
ciation for Computing Machinery. ISBN 979-8-4007-0103-
0.
Gabry, J.; Češnovar, R.; Johnson, A.; and Bronder, S. 2025.
cmdstanr: R Interface to ’CmdStan’. R package version
0.9.0, https://discourse.mc-stan.org.
Gelman, A. 2006. Prior distributions for variance parame-
ters in hierarchical models (comment on article by Browne
and Draper). Bayesian Analysis, 1(3): 515–534. Publisher:
International Society for Bayesian Analysis.
Gierl, M. J.; and Lai, H. 2016. Automatic item generation. In
Handbook of test development, 2nd ed, 410–429. New York,
NY, US: Routledge/Taylor & Francis Group. ISBN 978-0-
415-62602-6 978-0-415-62601-9 978-0-203-10296-1.
Gierl, M. J.; Lai, H.; and Turner, S. R. 2012. Using auto-
matic item generation to create multiple-choice test items.
Medical Education, 46(8): 757–765.
Ho, A. D. 2024. Artificial Intelligence and Educational Mea-
surement: Opportunities and Threats. Journal of Educa-
tional and Behavioral Statistics, 49(5): 715–722. Publisher:
American Educational Research Association.
Irvine, S. H.; and Kyllonen, P. C., eds. 2002. Item generation
for test development. Item generation for test development.
Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers.
ISBN 978-0-8058-3441-3. Pages: xxxii, 412.
König, C.; and Alexandrowicz, R. W. 2024. Benefits of the
Curious Behavior of Bayesian Hierarchical Item Response
Theory Models—An in-Depth Investigation and Bias Cor-
rection. Applied Psychological Measurement, 48(1-2): 38.
Kıyak, Y. S.; and Emekli, E. 2024. ChatGPT prompts for
generating multiple-choice questions in medical education
and evidence on their validity: a literature review. Postgrad-
uate Medical Journal, 100(1189): 858–865.
Liu, Y.; Bhandari, S.; and Pardos, Z. A. 2025. Leverag-
ing LLM respondents for item evaluation: A psychometric
analysis. British Journal of Educational Technology, 56(3):
1028–1052.
Lord, F. M. 1980. Applications of Item Response Theory to
Practical Testing Problems. Lawrence Erlbaum Associates,
Inc. ISBN 978-0-89859-006-7. ERIC Number: ED312280.
Madaan, A.; Tandon, N.; Gupta, P.; Hallinan, S.; Gao, L.;
Wiegreffe, S.; Alon, U.; Dziri, N.; Prabhumoye, S.; Yang,
Y.; Gupta, S.; Majumder, B. P.; Hermann, K.; Welleck, S.;
Yazdanbakhsh, A.; and Clark, P. 2023. Self-Refine: Iterative
Refinement with Self-Feedback. Advances in Neural Infor-
mation Processing Systems, 36: 46534–46594.
Nicewander, W. A. 2018. Conditional reliability coefficients
for test scores. Psychological Methods, 23(2): 351–362.

Polson, N. G.; and Scott, J. G. 2012. On the Half-Cauchy
Prior for a Global Scale Parameter. Bayesian Analysis,
7(4): 887–902. Publisher: International Society for Bayesian
Analysis.
Russell-Lasalandra, L.; Christensen, A.; and Golino, H.
2024. Generative Psychometrics via AI-GENIE: Automatic
Item Generation and Validation via Network-Integrated
Evaluation.
Serban, I. V.; Garcı́a-Durán, A.; Gulcehre, C.; Ahn, S.;
Chandar, S.; Courville, A.; and Bengio, Y. 2016. Gener-
ating Factoid Questions With Recurrent Neural Networks:
The 30M Factoid Question-Answer Corpus. In Erk, K.; and
Smith, N. A., eds., Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1:
Long Papers), 588–598. Berlin, Germany: Association for
Computational Linguistics.
Song, Y.; Du, J.; and Zheng, Q. 2025. Automatic
item generation for educational assessments: a sys-
tematic literature review. Interactive Learning Envi-
ronments, 0(0): 1–20. Publisher: Routledge eprint:
https://doi.org/10.1080/10494820.2025.2482588.
Tan, B.; Armoush, N.; Mazzullo, E.; Bulut, O.; and Gierl,
M. 2024. A review of automatic item generation techniques
leveraging large language models. International Journal of
Assessment Tools in Education, 12(2): 317–340.
Van der Linden, W. J.; and van der Linden, W. 2016. Hand-
book of item response theory, volume 1. CRC press New
York.
von Davier, M. 2018. Automated Item Generation with Re-
current Neural Networks. Psychometrika, 83(4): 847–857.
Zelikman, E.; Ma, W. A.; Tran, J. E.; Yang, D.; Yeatman,
J. D.; and Haber, N. 2023. Generating and evaluating
tests for k-12 students with language model simulations: A
case study on sentence reading efficiency. arXiv preprint
arXiv:2310.06837.

Appendix
Gelman-Rubin convergence diagnostic Check

Figure 6: Gelman-Rubin convergence statistic for all parameters in our 2PL IRT model.

Student Ability

Figure 7: Distribution of the estimated student ability parameters θj by type of exam, with dashed lines at their respective
means.

Test Generation Pseudocode

Algorithm 1: Assemble 10 High-Quality MCQs

Require: courseMaterials {syllabus, description, past work}
Ensure: finalExam {10 high-quality MCQs}

1: Pre-processing:
2: materialsText← ConvertToPlainText(courseMaterials)
3: generatorPrompt← ⟨materialsText, fiveGoodAPStatsExamples⟩
4: goodMCQs← ∅, badMCQs← ∅
5:
6: Generate–label–refine loop (until 20 good MCQs):
7: while |goodMCQs| < 20 do
8: mcq← GenerateMCQ(generatorPrompt)
9: quality← JudgeQuality(mcq, materialsText)

10: if quality = "good" then
11: goodMCQs← goodMCQs ∪{mcq}
12: else
13: badMCQs← badMCQs ∪{mcq}
14: end if
15: generatorPrompt← RefreshPrompt(

generatorPrompt, first5(goodMCQs), first5(badMCQs)
)

16: end while
17:
18: Exam assembly (difficulty filter & top-up):
19: graded← JudgeDifficultyFitCorrectness(goodMCQs, materialsText)
20: approved← { g ∈ graded | g.isApproved}
21: ranked← SortDescendingByDifficulty(approved)
22: while |ranked| < 10 do
23: extraGood← GenerateAdditionalGoodMCQs(

generatorPrompt, materialsText, count=20
)

24: goodMCQs← goodMCQs ∪ extraGood
25: graded← JudgeDifficultyFitCorrectness(goodMCQs, materialsText)
26: approved← { g ∈ graded | g.isApproved}
27: ranked← SortDescendingByDifficulty(approved)
28: end while
29: finalExam← first 10 elements of ranked
30: return finalExam

Prompt Templates
Generator Prompt

You have the following course information:

Course Name: {course_name}
Course Description: {desc}
Exam Content: {exam_content}
Syllabus Content: {syllabus_content}

Generate EXACTLY ONE multiple-choice question in JSON format, with these fields:
- question
- options (an array of exactly four answer strings)
- answer (the correct option text exactly)
- explanation
- relevant_courses
- difficulty (1-10)

- key_concepts (list of strings)
- question_type
- quality (1-10)

Guidelines:
- The question must be mentally solvable in <5 minutes.
- No direct references to external data or prior questions.
- Must be non-trivial: no purely formula-plugging or trivial difficulty.
- Return ONLY the JSON (no extra text).
- Do NOT generate a question that covers concepts already touched on in prior
questions.
- Only use the provided materials as background for what concepts are covered in
the course. Do not base your questions explicitly off of course materials.

Importantly, do not ask questions about concepts that are not in the course
materials. Do not infer concepts, only use what is presented in the materials.

In general, question generation should follow the following guidelines:

1. Difficulty and Conceptual Depth:
- Multi-Step Reasoning: Questions should require several steps of reasoning or
combine two or more concepts. For example, a question might ask students to
analyze a scenario by connecting multiple theoretical ideas.
- Subtle Distractors: Create answer options that are closely related conceptually,
with subtle differences, so that common misconceptions or partial understandings
can lead to selecting an incorrect option.
- Conceptual Integration: Ensure that some questions merge multiple key topics or
concepts from the course, challenging students to synthesize information rather
than apply a single formula or idea.
- Non-Routine Scenarios: Include some problems with novel or less typical
settings. This could involve re-framing standard problems in a new context or
adding an extra layer of complexity to the scenario.
- Emphasis on Deep Understanding: Questions should assess not only procedural
skill but also the implications and reasoning behind the concepts.

2. Content Coverage and Difficulty Distribution:
- Cover all major topics from the course (course name, description, syllabus,
and/or exam).
- In case of any mismatch between the course description/syllabus and exam
content, default to using the course name and description.
- Ensure each question assesses a unique concept.
- The overall set should be challenging with an average student scoring around 50%.
- Difficulty distrubution. Generate questions that would be seen as medium
difficulty in an AP exam of for the given course. Example questions for Statistics
are provided below.

Calibration Examples from a Statistics Course:
{AP STATS QUESTIONS, OMITTED}

PAST JUDGE DECISIONS:

GOOD EXAMPLE #{number}:
QUESTION: {question}
OPTIONS: {answer_options}
DECISION: KEEP

BAD EXAMPLE #{number}:
QUESTION: {question}
OPTIONS: {answer_options}

DECISION: REMOVE

Self-Refine Judge Prompt

You are judging proposed exam questions for a course. You have the following
course info:

Course Name: {course_name}
Course Description: {desc}
Exam Content: {exam_content}
Syllabus Content: {syllabus_content}

{course_info}

Below are some previously judged examples:

GOOD EXAMPLE #{number}:
QUESTION: {question}
OPTIONS: {answer_options}
DECISION: KEEP

BAD EXAMPLE #{number}:
QUESTION: {question}
OPTIONS: {answer_options}
DECISION: REMOVE

Here is the proposed question:

Q: {question}
Options: {options}

Appropriateness guidelines:

- No direct references to explicit syllabus content. (e.g. "Which statistical
topic is NOT explicitly emphasized in the STAT 1: Introduction to Statistics
course based on the syllabus description?")
- No questions about course logistics (term paper requirements, office hours).
- No references to external resources or tables (z-tables, software, etc.).
- Any calculations must be solvable mentally (no calculator, pen and paper, or
tables).
- Any question that is purely formula-plugging or trivial is inappropriate.
- Answer options must not refer to one another (e.g. "Option A is correct and B is
False").
- The question must relate to core concepts reasonably inferred from the course
description, syllabus, and/or exams.
- You should be very strict about this. If a concept does not appear in the
provided materials, we should never have an exam question about it.

Appropriateness example:

Question: The number of misprints on a page of a newspaper follows a Poisson
distribution
with a mean of 1.2 errors per 1000 words. What is the probability of finding
exactly 4 errors in 1000 words?

This is inappropriate because it only asks students to apply a memorized formula.

Calibration Examples from a Statistics Course: {Omitted}

Other rejection criteria:

- If the question asks about a concept that is already covered in the GOOD
examples (above in the few-shot block), remove it.
- Questions should NOT ask about concepts that have already been covered.
- If it rehashes or duplicates the BAD examples, remove it.

Decide if we KEEP or REMOVE the question:
- Return exactly "Keep" if the question meets guidelines.
- Otherwise return "Remove".

Example Exam: Programming Languages
Programming Languages Exam

Question 1/10
Which of the following is NOT a typical benefit of using a virtual machine (VM)
when implementing programming languages?
a. Platform independence for running code on different hardware
b. Enhanced runtime optimizations through techniques like JIT compilation
c. Direct access to low-level hardware registers and machine-specific instructions
d. Improved security and isolation of the execution environment

Question 2/10
In designing a programming language that integrates multiple paradigms
(imperative, object-oriented, functional, and declarative), which of the following
strategies best facilitates a consistent semantic specification while enabling
efficient execution on a virtual machine?
a. Using separate compilers for each paradigm
b. Leveraging a common abstract machine with unified control structures
c. Restricting the language to a single paradigm to simplify semantics
d. Relying solely on syntax-directed translation for code generation

Question 3/10
In ML, the functions foldl and foldr are used for list processing. Which of the
following statements best summarizes the trade-offs between foldl and foldr in a
strict evaluation language like ML?
a. foldl is tail-recursive and more memory-efficient for accumulating results on
large lists while foldr is generally non-tail-recursive and may cause stack
overflow on very long lists.
b. foldr is tail-recursive and thus more efficient for processing lists whereas
foldl is non-tail-recursive and prone to performance issues on large lists.
c. Both foldl and foldr are tail-recursive in ML so the choice between them only
affects the order of element processing not performance.
d. Neither foldl nor foldr is tail-recursive in ML making both functions equally
inefficient for processing very long lists.

Question 4/10
In a language design process that employs separate syntactic and semantic
specifications, which potential issue is most likely to occur if updates to the
formal grammar (e.g., using BNF) are not properly reflected in the corresponding
semantic rules?
a. The compiler may become more efficient due to fewer semantic checks.
b. Ambiguities in the grammar will be resolved automatically during parsing.
c. The runtime system will ignore outdated semantic actions and use default
behaviors.
d. Inconsistent behavior may result as the refactored grammar no longer aligns
with the semantic actions.

Question 5/10
In a statically-typed functional language that is extended with object-oriented
features, what is a primary design challenge that arises from such integration?

a. Ensuring functions remain pure despite the presence of mutable objects
b. Eliminating the need for compile-time type checking
c. Simplifying method overloading to enhance runtime performance
d. Reducing the overall size of the runtime system by merging paradigms

Question 6/10
In designing a virtual machine for a multi-paradigm programming language that
supports both functional and object-oriented styles, which design decision best
enables the efficient execution of lazy evaluation and dynamic dispatch?
a. Implementing separate runtime systems for functional and object-oriented code
b. Using a unified runtime environment that supports deferred computations along
with method tables for dynamic dispatch
c. Prioritizing eager evaluation for all constructs to simplify execution
d. Relying solely on just-in-time compilation to handle both paradigms

Question 7/10
In the design of a programming language, what is a primary benefit of clearly
separating its syntactic specification (for example, using a formal grammar like
BNF) from its semantic specification (such as type rules and execution behavior)?
a. It allows independent evolution and modification of syntax and semantics
without impacting each other
b. It enables direct code execution without any intermediate translation steps
c. It reduces the need for runtime error checking by merging syntax and semantic
analysis
d. It simplifies parsing by eliminating the need for a separate lexical analyzer

Question 8/10
When specifying a programming language’s syntax with Backus-Naur Form (BNF), which
technique is most effective in reducing ambiguity and simplifying parsing?
a. Increasing the number of production rules to cover diverse constructs
b. Implementing left-recursive productions to enforce recursion
c. Applying left-factoring to isolate common prefixes in production rules
d. Using separate grammars for distinct paradigms and merging them at parse time

Question 9/10
Which of the following best describes the type inference mechanism used in ML?
a. It relies on runtime type checking to determine the type of each expression
b. It automatically deduces the most general type for expressions without explicit
type annotations
c. It requires every function and variable to be explicitly declared with their
types
d. It applies only to primitive types leaving user-defined types unchecked

Question 10/10
In designing a multi-paradigm programming language that integrates imperative,
object-oriented, functional, and declarative styles, which design aspect requires
the most careful consideration to ensure consistent behavior across all paradigms?
a. Memory allocation strategies in the runtime system
b. Variable scoping and binding rules
c. Syntax for loop and control structures
d. Low-level hardware interfacing capabilities

